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Abstract

I study how farmers respond to surface water scarcity in California, a setting where they might adapt
through socially costly actions like unregulated groundwater extraction, or water conserving actions like
land fallowing. Using variation in region-specific sub-annual surface water forecasts, I estimate that farm-
ers increase groundwater use more than they conserve water, especially at the end of the planting season.
Meanwhile, farmers drill groundwater wells in response to average declines in surface water availability,
fundamentally changing their adaptation choice set. After drilling a well, T find that farmers plant more
water-intensive crops and conserve less water. These choices reveal important information about the
benefits and costs of adaptation. Comparing my estimates of adaptation choices with existing methods
to estimate net benefits, I find that the majority of the benefit of short-run ex-ante adaptation comes
from avoiding socially costly ex-post adaptation. Ex-post and long-run adaptation impose substantial
external costs and result in a long-term decline in California’s ability to adapt. My paper provides one
of the most comprehensive studies of agricultural adaptation in terms of the margins of adaptation as

well as considering the private and social net benefits of adaptation.
Click here for latest version

Most major agricultural areas globally have experienced warming and drying on average over the last
half-century (Lobell and Di Tommasol, [2025)), as well as more frequent droughts (Hoover and Smith, [2025)),
meaning that short and long-term water stress will become pervasive in many regions. The future of global
food production depends on how much farmers can adapt to these conditions. So far, the economics literature
has found that adaptation recovers a moderate-at-best proportion of lost yields, estimated using methods
that are agnostic about which actions farmers takeﬂ Unless we know how farmers adapt to weather and
climate shocks, we cannot make informed policy suggestions to improve on the dismal projections.

Further, the moderate yield recovery may actually overstate the true benefits of adaptation if farmers
adapt primarily by taking up practices that have external costs, such as unsustainable groundwater extrac-
tion. Groundwater is insufficiently managed globally, and extensively used in irrigation. Farmers apply

groundwater on 38% of irrigated land (Nagaraj et al. 2021), and groundwater substantially declined in
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IThe papers that have estimated the benefit of adaptation are not only inconclusive, but suffer from theoretical flaws. [Burke
and EmericK (2016|) uses long differences to find adaptation did not recover yields from past climate change, though |Lemoine
(2018) explains that long differences do not identify climate at alllHultgren et al.| (2022) estimate the benefit of agricultural
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up to 30% of yield losses. However, |[Lemoine et al.| (2025) explain that [Hultgren et al.| (2022) essentially identify the benefit of
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36% of aquifers over the last 40 yearsﬂ (Jasechko et al., [2024)). If farmers adapt by applying groundwater
unsustainably, their ability to adapt declines over time, resulting in diminished future adaptation benefits
(Lemoine, [2018). [Fishman| (2018) and Hornbeck and Keskin| (2014) have documented how groundwater
depletion leads to future drought sensitivity. Adapting through unregulated groundwater use also leads to
common pool externalities and other physical externalities like saltwater intrusion (Goebel et all 2019)), ar-
senic leaching (Smith et al., [2018), infrastructure damage through subsidence (Borchers et al., [2014)), declines
in neighboring wells (Sears et al., [2017)), and a permanent decrease in aquifer storage capacity (Smith and
Majumdai, [2020). The externalities are costly and might severely diminish the social benefits of adaptation
deriving from yield increases.

In this paper, I ask “how do farmers adapt to surface water scarcity, and what are the consequences of their
adaptation?” I study the agricultural sector in California. California farmers already face yearly surface water
uncertainty, long-run declines in surface water availability, and a historically unmanaged aquifer, common
ingredients in agriculture under climate change. I classify how farmers respond to expected and realized
surface water scarcity into two broad types of actions. The first is water conservation, their actions that
correspond to a reduction in water usage: land fallowing and crop switching. The second type of action is
groundwater intensification, where a farmer begins harnessing another source of water to offset surface water
declines. I study well drilling as a measure of farmers’ increasing access to groundwater and I study changes
in depth to the groundwater table as a proxy for their extraction and usage of groundwater.

I aim to measure how much farmers take each type of action in preparation for future surface water
scarcity. California issues regular forecasts of surface water shortfalls during the planting season and there is
variation in these forecasts across regions of California, and over time. Over 200 water districts have contracts
from the state or federal government for surface water deliveries in the dry summer growing season. Because
of exogenous differences in snowpack which differentially fill reservoirs, water districts will receive different
amounts of surface water. The government aids farmers’ decision-making through providing surface water
shortfall forecasts, where a shortfall is the percentage of contracted water not going to be delivered. The first
comes out in the early planting season, and then updated forecasts are issued in the mid and late planting
seasons.

In order to estimate how farmers respond to forecasted and realized water scarcity, I construct one of
the broadest datasets of adaptation choices to date. My dataset includes district-level crop choices, land
fallowing choices, change in depth to the groundwater table, well drilling, and proxies for water application,
combined with surface water forecasts and updates spanning from 1967 until 2022. I estimate how farmers
adapt to surface water shortfalls by regressing the cumulative levels of adaptation actions for a water district
between the beginning of the year and summer on the initial forecast and two surface water updates. The
coefficient on each of the three components of surface water shortfall information identifies how farmers
adjust their water conservation or groundwater intensification actions given a change in their expectations
about future surface water scarcity, or in the case of the final update, the realized amount of surface water
scarcity.

I find that farmers adapt with both water conservation and groundwater intensification. Specifically, a
1 percentage-point increase in the surface water shortfall forecast leads to a 0.25% decrease in high water

acreage, a 0.2% increase in low-water acreage, a 0.26% increase in idled acreage, a 0.22% increase in well

20f course, this is only a proxy for a lack of management. It is theoretically possible for the optimal policy to be to deplete
groundwater. However, there are no estimates for the actual percent of aquifers unmanaged globally. We do know that virtually
no through 2022, virtually no transboundary basins, which cover multiple countries, were managed (Eckstein} 2021)).



drilling and a 0.08% increase in the depth to the groundwater table (implying a XXX % increase in extraction)
on average. My estimation strategy also lets me identify how adaptation changes throughout the planting
season. I find that farmers tend to adapt through water conserving actions like crop switching early in the
planting season while this option is still available. Later in the planting season their adaptation choices
narrow and I find they tend to fallow land or increase groundwater usage. To estimate how these actions
translate into actual water usage, I regress a widely-used proxy for total water application on the surface
water forecast. I find total water application decreases early in the planting season in response to a lower
forecast while it increases given a lower forecast later in the planting season.

My results showed that farmers take two types of externally costly adaptation: groundwater extraction
later in the planting season, and well drilling earlier in the planting season. Well drilling is externally costly
if farmers shift toward groundwater intensive behavior after drilling. To understand the size and persistence
of the external costs of well drilling, I need to identify when those wells would have been drilled absent the
surface water shock. I use local projections (Jordal [2005)) to trace out the cumulative change in wells from a
surface water shortfall shock in a given year. I find that the farmers who drilled in response to a shock did
so about three to five years earlier than they otherwise would haveﬂ The shift forward in time represents a
real social cost because having a well likely changes farmers’ future water use choices. After drilling, farmers
gain access to the choice to extract (more) groundwater, which permanently lowers the marginal cost of
water during drought, and therefore the risk of high prices and crop failures.

Then, I conduct two analyses to study how farmers change their groundwater intensity after drilling a
well. The first captures how the sensitivity of adaptation choices change as a district’s well stock increases.
I take the main estimating equation and interact the three periods of surface water shortfall information by
the lag of the cumulative wells in a district. I find that water conserving actions decrease as the well stock
increases. Second, I study how new wells affect the types of acreage planted. If groundwater reduces water
risk, we should expect to see farmers planting more perennial crops like tree nuts which have a higher cost
of crop failure and thus a higher sensitivity to water risk. The challenge of estimating new acreage caused
by wells drilled is that both choices are made simultaneously, as the future expected value of perennials
factors into the crop decision and well decision. Therefore, I use exogenous changes in well drilling costs as
an instrument for new wells. My main instrument is the interaction of the lag of the number of well drilling
contractors in a district (competition) and annual steel pipe prices (a necessary input). Since crop choice
might change over a few years after a well is drilled, I use the exogenous new wells as a shock in a local
projections framework (Jorda et all [2015). After a ‘surprising’ new well is drilled in a county, I find that
nearly all annual acreage declines, but is slightly more than replaced by perennial acreage over a period of
four years. The shift suggests that the way that groundwater lowers downside risk is incredibly valuable to
farmers. The results are in line with estimates in the appendix showing that farmers extract about 1800 acre
feet per year on the average new well, enough to irrigate 450 acres with about 3.5 feet of water per year,
sufficient for many perennials.

Consequently, well drilling decreases conservation-based adaptation while simultaneously driving yearly
water application beyond pre shortfall shock levels. Though California agriculture has gradually transitioned
toward perennial crops, adaptation to acute surface water shortfall accelerated this shift by several years,

demonstrating that adaptations to annual shocks can have lasting effects.

3 Although short run shocks do not result in permanent new wells, long-run surface water declines do. In an appendix
analysis, I use show that an exogenous permanent decline in surface water deliveries permanently increases the well stock. My
estimates imply that 8.5% of wells drilled annually are directly because of long-term scarcity.



Finally, I quantify the consequences of farmers’ adaptation choices. First, I estimate the private net
benefit of adaptation using the conceptual framework laid out in |Shrader| (2023). In the baseline framework,
I regress farm profits on the surface water shortfall forecast and realization, and the coefficient on the forecast
would recover the value of adaptation. In my context, farmers make choices based on multiple forecasts
across the planting season, so I generalize Shrader| (2023))’s framework to account for multiple forecasts and
decision periods. Also, since farmers tailor their adaptation investments specifically to the level of surface
water expected, I modify the baseline framework so that the benefit of adaptation is measured by a forecast
becoming marginally more accurate rather than by a forecast marginally increasing. In practice, I simply
interact the forecast by an indicator for whether it over-estimated or under-estimated the final surface water
shortfall.

I find that marginally more accurate early-planting season surface water forecasts do not affect ex-post
county profits, consistent with early forecasts being highly uncertain, and farmers having ample time to adjust
as conditions materialize. In contrast, more accurate information mid-planting season increases county-level
profits by approximately $550,000, precisely when adaptation options become increasingly constrained.

Including the previous results, not only is mid-planting season adaptation significantly privately benefi-
cial, but it is also much more socially beneficial because farmers conserve more water. Using conservative
approximations of the groundwater externality, I find that the majority of the benefit of mid-planting season
adaptation comes from avoiding groundwater that would have been pumped in response to realized surpris-
ing surface water shortfall. In contrast, a back-of-the envelope bounding exercise reveals that the external
costs of late-planting season (ex-post) adaptation is at least 20% of the size of the net private benefits of
adaptation. Worse, the external costs of a new well drilled due to a shortfall shock is on the order of 10
times the net private benefit.

Ultimately, the value of agricultural adaptation depends critically on how farmers adapt, and California’s
farmers adapted primarily and increasingly with groundwater extraction. Their historical strategy could not
be sustained in the long run. Farmers depleted the aquifer faster than optimal because of a lack of regulation,
while climate change increased the future value of the aquifer. Thus, the social value of adaptation was lower
than one might expect.

My paper contributes to the climate adaptation literature in three ways. (Carleton et al.| (2024) explains
that the literature exists in two independent strands, the first describing mechanisms of adaptation and the
second identifying the value of adaptation broadly in order to correctly estimate climate damages. I con-
tribute to both strands and act as a rare bridge across the two, showing that the mechanisms fundamentally
affect the value of adaptation, particularly if different adaptation strategies impose external costs.

First, I contribute to the literature on forecasts for ex-ante adaptation, which finds that anticipatory
responses substantially reduce weather-related damages (Molina and Rudik| (2022), [Shrader et al.| (2023)),
Downey et al. (2023)), [Shrader| (2023, |Anand| (2023)). My paper adds to the literature in three ways. I
modify the baseline framework of |Shrader| (2023) by estimating the benefit of adaptation across multiple
intra-annual periods, potentially useful in agricultural adaptation where actions vary across the year. Second,
I join |Anand| (2023) in adding more evidence for the importance of lead times in forecasts in some contexts,
challenging the theoretical model of Millner and Heyen| (2021)), which concludes that long-run predictability
becomes irrelevant when people can continuously adjust their actions. Third, I am one of the few studies to
examine the value of adaptation through forecasts in an agricultural setting, despite agriculture being the

industry most affected by climate change. Burlig et al. (2024) also studies agriculture, but examines the



value of the forecast itself, rather than using the forecast to identify the value of adaptation. Fourth, I study
how long-run adaptation (well drilling) affects agents’ responses to forecasts for the first time.

On the mechanisms side, I undertake the broadest study of farmers’ adaptation actions, contributing to
our knowledge of how farmers adapt. Other papers have estimated a few of the potential mechanisms, either
showing what actions are effective for promoting climate resilience, or what farmers actually do in response
to weather shocks. |Michler et al. (2019) and Auffhammer and Carleton| (2018) showed that conservation
agriculture practices reduced farmers’ sensitivity to climate shocks. [Fishman (2018)) and Hornbeck and)|
showed that investment in wells and groundwater extraction led or will lead to more sensitivity
to drought. Blakeslee et al.| (2020) find little evidence of farmers adapting to long-run water scarcity within
agriculture, instead shifting industries. Burlig et al.| (2024) and both examine multiple

adaptation choices, though neither examines a socially costly adaptation directly. I have the only paper

studying both conservation and groundwater intensification choices, and both long and short-run decisions,
comparing the uptake, consequences and value of both.

Crucially, my paper shows how bridging the two literatures is key to understanding the value of adap-

tation. [Deschenes| (2022) is the only other paper I am aware of has studied both strands at the same time,

showing that adaptation to increasing temperatures decreased mortality but increased electricity use and

hence emissions. However, [Deschenes) (2022) neither directly measures uptake of the long-term adaptation

strategy (air conditioner adoption) nor calculates the actual benefit of adaptation. Otherwise, the literature
assumes that the value of adaptation comes from private actors optimizing over an abstract choice vector,
using the envelope theorem to argue that adaptation choices do not affect first-order benefits (e.g.
(2022)), [Shrader| (2023)). Papers valuing adaptation this way also typically use yield as a dependent
variable, which is not directly tied to farmers’ welfare (Schlenker and Roberts| (2009), Burke and Emerick|
(2016), Hultgren et al|(2022)). My paper reveals the previous methods of estimating aggregate adaptation

fail to capture the actual benefits. Farmers change their adaptation strategies across a season, reflecting
changing private costs over time, and unregulated groundwater extraction has non-trivial external costs.

In addition to the climate adaptation literature, my paper contributes to the water economics literature.

A growing area of the literature studies California’s complex water institutions(Hagerty and Brunol (2024]),
Bruno et al.| (2024), Bruno and Jessoe| (2021)), |Ayres et al. (2021)), [Hagerty| (2023), Regnacq et al.| (2016)).

I am one of the first papers to study the surface water allocation forecasts specifically, public information

predicting public water availability, which concerns about 19% of annual agricultural water. I also add to
the literature on the substitution between groundwater and surface water. These resources are close to
perfect substitutes for inputs, but there is a wedge between the private and social value of these resources.
Much of the empirical work in the area examines the hydrological connection between surface water and
groundwater (Kuwayama and Brozovid| (2013), Wheeler et al.| (2021))), but less is known about the elasticity
of substitution between the resources. estimates the elasticity of substitution in California

using the state’s estimates of water use, while I study substitution over time through local well investment

choices.

The paper proceeds as follows. Section 1 covers the essential background, while section 2 covers the data.
Section 3 estimates the how farmers adapt in the short-run, and section 4 explores the consequences of well
drilling. Section 5 describes the conceptual model behind estimating the net private benefit, and applies the
conceptual model to empirics. Section 6 ties together the results in a discussion of the net private benefits

and external costs of adaptation, and section 7 concludes.



1 Background

1.1 California’s agriculture and climate

Ample sunlight, mild winters and fertile soil has made California a major supplier of permanent crops like
tree nuts and citrus (2/3rds of the US total) and other high-valued crops like vegetables and berries (1/3 of
the US total), primarily in an inland region called the Central Valley (Ruth| (2017), |California Department
of Food and Agriculturd (2023)). However, agricultural water demand and the natural water availability
are mismatched. The majority of the state’s precipitation (75%) falls north of the Central Valley, and
the majority of the Central Valley’s precipitation falls between October and April (90%), which is outside
of the hot summer months and the main fruiting season, when crop water demands are the highest (CA
State Climatologist,, 2025)). Therefore, agriculture in California depends on irrigation, facilitated by large
infrastructure projects for the storage and conveyance of surface water, and also private groundwater access.
California uses more irrigation water in agriculture than any other state (16% of the nation’s total), and the
majority of irrigated land is in the Central Valley (75%) (US Geological Survey| (2025)), Dieter et al.| (2018)).

Despite the high presence of permanent crops, more than 2/3rds of California’s irrigated acreage is devoted
to growing annual crops, allowing farmers the opportunity to make different planting decisions yearly (Bauer,
2022). Because of the long growing season, annual crops are planted at various times throughout the year.
Typically, cool season crops are planted either between December and February, or July and September, while
warm season crops are planted between March and June. Grains are usually planted in the fall, from October
to December. High summer temperatures make the average crop water requirement for warm weather crops
much higher than cool weather crops, though there is a lot of variation between annuals planted at the same
timeﬂ Farmers in Central California have commonly used crop switching for drought management (Visser
et all, 2024)).

1.2 Surface water projects and surface water allocation forecasts

The state of California and the US Bureau of Reclamation each built systems of reservoirs and canals between
the 1930s and 1960s for flood control and water delivery across California. These state and federal water
infrastructure projects are referred to respectively as the State Water Project (SWP) and Central Valley
Project (CVP). These projects deliver a substantial portion of their water to agriculture (one-third of SWP,
and one-half of CVP), and combined deliver about 19% of the water used in agriculture yearly (Bureau
of Reclamation (2024), Department of Water Resources| (2024)). Irrigation districts gained access to a set
delivery quantity from these projects by signing long-term contracts in the 1960s, in return for covering capital
and operating costs. Through these arrangements, districts with project contracts have received heavily
subsidized surface water (Sharp and Carini, 2004)). The majority of water districts charged agricultural users
less than $50/ acre foot for surface water in 2021, and many paid much less, while groundwater rates tend
to be higher, and the market rate for surface water higher stilﬂ (Aquaoso| (2021)).

However, the amount of surface water that projects are able to deliver varies from year to year because

4For example, though they are both warm season crops, cotton requires almost three times as much water to grow as dry
beans.

5Burlig et al.| (2020) estimates the average marginal cost of groundwater to be $50 an acre foot, though a short survey of
agricultural districts groundwater rates suggest that groundwater is usually a bit more expensive, around $200, which is 2-3
times districts’ surface water rates. The surface water market price can fluctuate dramatically, from $150 in wet years to $1300,
as proxied by the Nasdaq Veles water prices index.



of the variability in snowpack in the Sierra Nevada mountains, which supplies the majority of the water in

California’s developed surface water infrastructure (Soderquist and Luce| (2020), de Guzman et al| (2022)).

Specifically to aid agricultural decision makers, the Department of Water Resources and Bureau of Reclama-
tion publish a forecast at the start of the planting season for the percent of a district’s surface water contract
their projects are expected to fulﬁlﬂ . Updates to the initial surface water delivery projection
are announced irregularly until the final delivery percent is finalized in May or June at the start of the dry
season. I call the series of project forecasts “surface water allocation forecasts”, and the final realization
the “final surface water allocation”. Despite the surface water allocation forecasts coming from different

agencies, they have similar characteristics, and follow similar methodologies due to the joint administration

of the water projects (US Bureau of Reclamation and the California Department of Water Resources, |1986)).

The forecasts have been disseminated through newspapers, bulletins, and websites. Appendix figure
shows examples of what the surface water allocation forecasts have looked like through time. Low surface
water allocation forecasts are especially salient, making front page news in many agricultural communities.
Figure further shows the importance of the surface water allocation forecasts to water users. Out of all
water-related news topics in California published by the Department of Water Resources and the Bureau of
Reclamation, the highest median page views are for surface water allocation announcements.

In addition to yearly surface water uncertainty, long-term surface water availability has decreased over
time, and will continue to decrease. Between 2000 and 2020, the April 1st Sierra snowpack was only 80% of
the 1950-1980 average, and snowpack is expected to decrease by 48-65% of the historical April 1st average by
2100 (California Department of Water Resources (2025al), California Office of Environmental Health Hazard|
Assessment (OEHHA ) ) Project water allocations have also been declining about one point per year
since 1975 to reflect the reality of lower surface water availability. One surprising, and permanent surface

water shock occurred during my study period, allowing a rare way to identify adaptation to long-run changes
in surface water availability. In 1992, the Central Valley Project Improvement Act redistributed 14% of CVP
water from contractors to environmental uses in order to comply with the Endangered Species Act
Education Foundation, . The State Water Project was also affected due to the coordinated operations

of the projects (McClurg and Sudmanl [2000). I plot a summary of the variation of surface water allocations

within years and across years in appendix figure

The other major source of agricultural surface water in central California comes from streamflow origi-
nating in the Sierra Nevada. Irrigation districts and other public entities hold the vast majority of these legal
diversion rights (81% of water), obtained from the State Water Resources Control Boarcﬂ
Viers, . Although on paper, these rights operate on a system of priority, because of a lack of monitoring
and enforcement, rights holders in the same watersheds will face similar streamflow shocks in the same year

(Weiser, 20T).

1.3 Well drilling and groundwater

Groundwater supplies 40% of agricultural water in regular water years, and substantially more in dry years
(Greenspan et al., [2024)). The Central Valley aquifer is the second-most utilized in the United States.

6The intention is clearly stated in the CVP operations criteria: “all of the agricultural contractors need to know about their
water allocation as soon as possible so that they can make timely decisions and appropriate plans for using their allocated water

"Individuals hold less than 1% of water.



On average 2.4 million acre-feet more water was extracted annually than was recharged (US Geological
Survey, 2025). The severity of the overdraft has resulted in concerns about groundwater depletion and
other externalities including saltwater intrusion (Goebel et all 2019)), arsenic contamination (Smith et al.,
2018), infrastructure and property damage through subsidence (Borchers et all [2014)), an increase in the
future costs of extraction, and a permanent decrease in aquifer storage capacity (Smith and Majumdar,
2020)), in addition to the standard common pool externality. Nevertheless, until 2014 only 7% of the state’s
groundwater basins had defined property rights, none of which were in the Central Valley (Ayres et al.|
2018). The California legislature passed the Sustainable Groundwater Management Act in 2014 to address
unsustainable groundwater extraction. However, no anticipatory responses have been detected through 2022,
and many of the Central Valley’s regulated basins failed to meet the act’s guidelines for management planning
through 2024 (Bruno and Hagerty| (2024), |State Water Resources Control Board| (2024)).

To access groundwater, farmers can drill private wells. The State Water Resources Control Board has
required well drilling permits since 1990, which imposed a time delay on drillingﬁ (GEI Consultants, [2017)).
While physically drilling a well takes only a week, permitting and demand queues delays drilling by one to
six monthsﬂ Well drilling is a moderate investment for most farms. Agricultural wells in the last decade
have typically cost between $50,000 and $500,000, which is between 25% and 250% of the average farm’s
yearly income (Smith| (2014), [United States Department of Agriculture| (2022))).

1.4 Combining the background: adaptation in a year and over time

Now, I combine the pieces of the context to motivate how to study how farmers adapt to surface water
scarcity. I previously showed that surface water scarcity occurs both in the short-run, through uncertain
yearly surface water availability, and in the long-run, through persistent declines in surface water availability.
Thus, profit-maximizing farmers would respond though annual and long-run adjustments. I first characterize
the profit-maximizing problem in words to show how to conduct the empirical analysis of both timeframes
of adaptation.

A farmer aims to maximize her lifetime profits from crop production given exogenous, uncertain yearly
surface water which also has a long-run shift in availability. The farmer’s choices of short and long-run inputs
respond to the changes in surface water. In a simple dynamic optimization setting where short and long-run
adaptation options are separate inputs into a production function, we can separate the short-run adaptation
problem from the long-run one. Even while dynamically optimizing, a farmer still sets the marginal benefit
of short-run adaptation to the marginal cost of short-run adaptation. Therefore, I study the short-run
adaptation problem separately from the long-run adaptation problem.

By exploring a farmer’s short-run adaptation to surface water scarcity, I learn about how farmers adjust
when exposed to surface water shocks, something that is currently unknown in the literature. Intuitively,
how a farmer can adjust depends on when in the planting season she learns information. At different times
within a year, the choice set changes due to timing constraints and previously fixed decisions. Conditional
on the year’s dry-season surface water availability, receiving accurate dry-season surface water information
earlier is always more privately beneficial, because there are more adaptation options to choose from, and
the decisions would be better tailored to actual water conditions. Thus, even a farmer’s yearly adaptation

is a decision problem with several periods.

8Permits are virtually always granted.
9From the testimonies of two well drilling contractors.



Grounding this in reality, there is an early planting season, spanning from October to December, a mid
planting season, spanning from January to March, and a late planting season, running from April until the
start of the dry season in June. Then, the dry season / harvest season continues until September. In each
of the three periods before the dry season, farmers receive new information about surface water available to
them in the dry season, which becomes more accurate as the dry season approaches. In each planting period,
farmers can make a variety of short-run decisions. The first option is crop choice. Farmers choose to plant
any portion of her unplanted fields with annual crops or permanent crops suited to planting in that period.
Once a field is planted, that field cannot be planted with another crop until the following year (for annuals),
or until the year after abandonment (permanent crops). Crops differ in characteristics by their profitability
and water intensity. Although every planting period has crops of a variety of water intensities, on average
later planting periods have crops of higher water intensities. Second, farmers can choose to extract more
groundwater using wells that they already have, up to the capacity of their well, paying a per-unit cost of
extraction, typically only from the electricity cost to run a well pump. Finally, in every period, regardless
of past decisions, farmers can choose to abandon crops by ceasing to water what was already planted. By
the time the dry season arrives, the only options left for adjusting to surface water supply shocks are crop
abandonment and groundwater extraction. Through my empirical analysis, I will learn whether farmers
actually use these different options, and to what degree.

In figure 1} I summarize the farmer’s short run problem in a timeline, which illustrates how the timing of
precipitation and information aligns with the decisions available to the farmer, highlighting why the private
value of different adaptation decisions change over a year.

Then, there is long-run adaptation through well drilling. The benefit of a well is the sum of discounted
additional profits from having access to groundwater forever, which is partly determined by the long-run
expectations of dry-season surface water. In general, surface water availability has been declining, though it
is not straightforward to find variation in long-run beliefs about surface water availability to measure how
surface water availability affects wells. A large portion of the value of wells also comes from the price of
crops. Since high-water intensity perennial crops increased greatly in value over time, the overall value of
wells has also exogenously increased. The cost is a one-time fixed cost of well installation, which varies with
depth to the water table and the capacity of the well, and is usually substantial relative to a farmer’s income.
The irreversibility of the fixed costs of investment, plus the uncertainty of future surface water availability
means there is an option value of drilling.

Although well drilling is a long-run decision, a well is drilled within a particular year. Short-run surface
water information can have an effect on well drilling by changing the current year’s payoffs from a well, which
matters if well value is increasing across farmers generally. A well can be drilled anytime, but there is a delay
between making the drilling decision and having access to groundwater ranging between 1 and 6 months,
where the probability of longer delays increases during drier years. The well value changes throughout the
season for two reasons. First, the probability of being able to use the well in the current year decreases.
Second, the short, medium run and long-term surface water availability becomes more certain, affecting the
direct expectations of the value added of the well, as well as the option value. Which effect dominates is an
empirical question. Wells also affect short-run adaptation by giving farmers the choice to substitute with
more groundwater, rather than conserve surface water.

Empirically, we do not know how much farmers respond to long-run water scarcity by drilling wells.

Farmers without wells have a lower well value than farmers who do have wells. If the marginal product of



Figure 1: Timeline of agricultural decisions, costs of decisions, climate, and government actions

Precipitation ‘ Most om on om
Government Action ‘ Announces forecasts ’

Probability new well available High Mid Low None
Private cost of idling Low High

Private cost of extraction Fairly constant
Crop choices left All Mid + late Only late None
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Note: The figure summarizes the background, and illustrates the different timing of information and environmental conditions
that contributes to the complications in the farmer’s annual adaptation problem. The top line shows the timing of precipitation
in the year, showing no precipitation in the dry season. The second line shows the government’s main interventions. They
announce forecasts for surface water allocations prior to the dry season, and then deliver water during the dry season. The
next four rows show facts about the four adaptation actions. The first is the probability that a well drilling decision will result
in a new well usable during the current year’s dry season. The probability decreases as the dry season approaches because of
demand queues and permitting. The next adaptation is idling. Early idling decisions are privately cheaper because the farmer
never planted any crops. Late idling decisions are expensive because they are equivalent to crop abandonment, meaning the
farmer lost her investment. The private cost of extraction stays fairly constant throughout the season. The bottom row is
annual crop choices. Early in the planting season, the farmer can still choose whether to plant in early, mid, or late-season
crops. As time continues, the choices diminish.

water is low enough for farmers without wells, we will see them exit farming rather than drilling. Otherwise,
declines in surface water availability should lead to drilling.

Understanding adaptation choices is important for informing policy and for exploring the viability of
agriculture under higher surface water scarcity. However, knowing farmers’ choices is also important for
estimating the social costs of adaptation. Well drilling and groundwater extraction result in large unpriced
externalities. New wells are particularly socially costly because having a well decreases the marginal cost of
water in dry years and decreases the risk of high surface water prices (if farmers purchase surface water from
the market), which might result in a more water intensive crop mix and thus more water use every year,
and fewer water conserving choices made in dry years. The size of the externality depends on when the well
would have been drilled otherwise (i.e. how long the well remains excess). On the other hand, crop choice
has low social costs. Because surface water is allocated to rights holders and contract holders, tailoring crops
to the level of surface water available allows farmers to maximize private benefits without imposing costs on
other users of the surface water. To understand the full picture of adaptation and its external costs, I explore
the consequences of well drilling, the timing of drilling decisions, and the relative level of water conserving

and groundwater intensifying actions.
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Figure 2: Districts with surface water project contracts

Contract type

D CVP (Friant strong)
CVP (Friant weak)
CVP (north)

CVP (other)
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SWP (medium)
SWP (strong)

SWP (strongest)

CEEECENES

SWP (weak)

Note: The map shows the project districts in the sample, colored by the broad contract types which govern their allocation
forecast. The contract type explains whether the district gets Central Valley Project (CVP) water or State Water Project
(SWP) water, along with the canal or seniority associated with each contract. There is more variation than what is present on
the map. CVP (other) makes up 3 types of contracts, and each SWP district can technically have its own forecasting seniority.

2 Data

2.1 Unit of observation: water districts

I use a map of 3556 water districts from California’s state geoportal, augmented with alternate maps from
some missing districts (California State Geoportal (2022)), [Public Policy Institute of California (2025)),
partment of Water Resourced (2025b)), Department of Water Resources| (2025a))). I determine which districts
have contracts with the surface water projects by matching names of water districts and lists of contractors
using a crosswalk file from Hagerty| (2022)) (California Department of Water Resources| (2024b)), [US Bureau of]
(2025))). Through this process, I am able to match all 290 SWP contractors, 98 of 99 junior CVP
contractors, and 81 of 89 senior CVP contractors. Figure [2| shows the geographical distribution of districts,

where the colors differentiate the project contracts that each district has, and therefore the surface water
forecast they receive. There is slightly more variation in the data than is present on the map because the
CVP Friant, SWP alternate, CVP senior, and CVP other categories each have multiple types of contracts.

For districts that have contracts with multiple projects, I scale the forecasts by the average quantity deliv-

ered from each project (U.S. Bureau of Reclamation) [2025]). Overall, the project districts represent a large

share of California agriculture, covering 47% of cropland |California Department of Conservation, Farmland)
Mapping and Monitoring Program (2020)).
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2.2 Treatment variable: surface water forecasts

I digitize all surface water allocation forecast announcements for the Central Valley Project and State Water
Project, which have been published since 1967, with multiple forecast updates over multiple regions yearly
(California Department of Water Resources| (2024b)), |California Department of Water Resources| (2024a), [US
Bureau of Reclamation (2024)). Though California farmers get information about surface water availability
from a variety of sources, only these surface water allocation forecasts apply to a specific and measured
source of surface water.

The CVP and SWP announce their first surface water allocation forecast in the early or mid planting
season, and follow up with an average of 2.8 updates, roughly on a monthly basis, until the beginning of the
dry season. I construct a panel of the newest information available to farmers at the start of the mid-planting
season, late-planting season and dry season, using the surface water allocation forecasts closest to, but not
beyond, February 1st, April 1st and June 1st. Table in the Appendix shows that farmers receive surface
water allocation updates in these periods in most years. In some years, agencies did not publish updates in
periods where the surface water allocation forecast stayed the same. The SWP typically publishes surface
water allocation forecasts earlier, and finalizes its surface water allocation earlier, while in 47% of years, the
CVP did not issue a first surface water allocation forecast before February 1sﬂ

Overall, even though the forecasts come from different agencies, they are comparable. In appendix figure
I plot binscatters comparing surface water forecasts from the State Water Project and Central Valley
Project, showing that a given surface water forecast or final allocation has the same signal for both projects
on average. The average surface water allocation forecast near February 1st was 36% for the SWP and 41%
for the CVP. Both agencies also use the same conservative forecast rule, evidenced by the higher average
final surface water allocation, at 61% on average for the SWP and 60% on average for the CVP.

In years when there is no surface water allocation forecast update between February 1 and April 1, or
between April 1 and June 1, I carry over the most recent surface water allocation forecast, to match the
intention of the agency in retaining the previous projection. In contrast, the February 1st forecast is missing
in years when the USBR’s policy is to publish later forecasts. Farmers still need to make early decisions

based on expected surface water availability@

2.3 Water conservation choices: crop choice and land fallowing

For my crop-choice analysis, I use 30m x 30m crop data from USDA’s cropland data layer, which runs annually
back through 2007, covering years with a variety of water conditions (Boryan et al., [2011). I aggregate crop
classes by planting time and watering intensity to identify whether farmers change their decision-making
across either margirﬂ To make these broad crop categories, I first assign crop planting times using the
USDA’s usual planting and harvesting dates for US field crops (state level) and for vegetables (county
level), and T supplement missing crop categories with the University of California’s recommended planting
times for vegetables across the four climate regions in the right panel of figure [2| (USDA, NASS| (1997),

10The CVP’s reasoning is forecast reliability: “no reliable forecasts of seasonal runoff are available before February” (USBR),
1992). However, there are many spans of time where the CVP still published a forecast before February 1st.

H¥“Stanislaus County farmer Daniel Bays, who grows tree and row crops in Westley, said he was already making planting
decisions and preparing ground in the fall. ‘To wait until March 1 to decide whether or not you’re going to farm is a little
late,” he said. ‘It could get wet for the rest of March, and you're unable to get out and prep the fields to plant’” https:
//mavensnotebook.com/2025/03/12/ag-alert-initial-cvp-water-allotment-may-not-increase-plantings/

12 Aggregating the data reduces misclassification (Lark et al.l[2021]).
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USDA, NASS| (2007), Pittenger| (2015)). I assign watering intensity for annual crops using crop water needs
equations, which is a set of water intensity coefficients and growing length from the Food and Agriculture
Organization, and requires the input of planting times and local evapotranspiration, the latter of which I get
from the University of California’s Cooperative Extension (Brouwer and Heibloem| (1986)), UC Cooperative
Extension and California DWRI (2000))). I categorize high and low water intensity crops at the mean water
use, weighted by crop area, within planting times and climate regions so that the relative water intensity
represents reasonable crop choices in each region. Therefore, I have four annuals classifications depending
on planting time and watering intensity: early, high-water annuals (1%), early, low-water annuals (8%), late,
high-water annuals (12%), late, low-water annuals (8%). I show examples of representative crops for each
climate region, planting time and category in Appendix table The overall pattern shows that annuals
planted later in the year are typically more water intensive, and crop timing and water intensity depends on
region. In the main specification, I omit crops that are planted both before and after the dry season because
I cannot isolate which information these crops are responding to. I aggregate the remaining agricultural land
classes into four other groups: perennials (29%), idled and fallowed land (27%), double-cropped and alfalfa
(10%), and annuals with different planting times (5%).

2.4 Groundwater intensification choices: well drilling, groundwater extraction

and total water application

I measure well drilling decisions using well completion reports publicly available from California’s Department
of Water Resources (California Department of Water Resources, [2024c). Well drilling contractors have
been required to report well completion, modification and removal within 60 days of the action since 1967,
giving me the universe of completed wells (Department of Water Resources, [1981). The data include the
date completed, location (to a 1 mile section), purpose (agriculture, monitoring, etc) and action taken
(completion, removal, etc) for each well. My main variable of interest is the sum of agricultural wells
completed in a district between February and August, which should capture most well drilling decisions
responding to surface water supply forecasts and realizations after accounting for the drilling delayﬁ In
total, I observe 36,663 agricultural wells drilled in the districts that I study from 1967-2022. By the end of
the sample there is about 1 agricultural well for every 185 acres of agricultural land in these districts.

I proxy for groundwater extraction using changes in depth to the groundwater table, data that has
been collected for decades. 1 take an unbalanced panel of over 5 million monitoring well measurements
from California’s Department of Water Resources, and I interpolate a seasonal groundwater depth raster
at a 1 kilometer resolution, using the inverse-distance-weighted depth to the groundwater table for well
measurements within 5 kilometers (California Department of Water Resources| |2025¢). The interpolation
allows me to get more frequent and higher spatial resolution on groundwater depth observations, since few
monitoring wells exist throughout my long panel. The procedure should also be reasonable given California’s
relatively homogeneous aquifers.

I also collect a variable for total water application to compare overall conservation and groundwater
intensification. A major way farmers adjust water is through the amount of application on their fields
(Burlig et al. |2020). Like most regions, California has no data for actual water application. The best proxy

for water application across my entire period comes from an 800-meter grid of evapotranspiration from

1382% of wells include a purpose.
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Reitz et al.| (2023). Evapotranspiration measures plant transpiration and the evaporation of water from all
surfaces measured in meters per year, proxying for applied water in dry locations. The authors use machine
learning to train a model of evapotranspiration including remotely sensed evapotranspiration data beginning
in the 2010s, ground-level observational data beginning in the 1990s, and regional water balances through

the 1880s. The output is the best existing estimates of water application over time.

2.5 Other variables: farm profits, weather, streamflow forecasts

For the maximized values needed in this analysis, farm revenues, costs, and profits, I use the BEA’s county-
level farm income and expenses dataset, which ran from 1969 to 2024. I measure crop revenues with cash
receipts from crops, and crop inputs using the sum of all production expenses, excluding livestock purchased
and feed purchased. I calculate profits by subtracting the costs from the revenues. For streamflow forecasts,
I use the Department of Water Resources’s forecasts for dry-season runoff as a percent of the average, which
it began publishing in its snow survey in 1955 (Department of Water Resources| 2024)). I digitize these runoff
forecasts from 1965-2022, assigning them to districts based on which subbasin the centroid of the district
intersects with, since streamflow relates to stream diversion rights. Finally, temperature and precipitation
data comes from NOAA’s nClimGrid (Durre et al., [2022]).

3 How do farmers adapt to short-term surface water scarcity?

3.1 Methods: an empirical model of sequential adaptation

In this section, I explain how I estimate farmers’ adaptation to expected and realized surface water shortfalls.
I will use the term shortfalls to denote the inverse of the surface water allocations described in section [2} a
shortfall is the share of the contracted allocation that is not delivered. When a shortfall increases, adaptation
likely increases.

I study water conserving and groundwater intensifying adaptation actions. Water conserving actions
correspond to a reduction in water usage. Specifically, I examine changes in acres fallowed, and changes in
acres of cropland in different water intensities, each observed by harvest-time. With groundwater intensifying
adaptation, a farmer offsets the surface water shortfall with groundwater. The first intensifying action is well
drilling, capturing increasing access to groundwater, which I measure by the cumulative agricultural wells
drilled from the beginning of the year until the dry season. The second intensifying action is groundwater
extraction. I measure changes in groundwater extraction using the change in depth to the groundwater table.
I also study evapotranspiration as a proxy for the total water applied.

I can identify when farmers take adaptation actions using variation in the levels of announced and realized
surface water shortfall across the 200 water districts in my sample. The timing of different choices reveals
information about constraints in adaptation and the social value of earlier adaptation and information.
Roughly, farmers get three periods of surface water shortfall information. They receive a baseline shortfall
forecast early in the planting season, a mid-planting season shortfall forecast around March, and a final
shortfall announcement at the start of the dry-season in May and June. If I regress cumulative adaptation
actions on shortfall information throughout the year, I capture how a one-point increase in shortfall in, say,
the middle of the planting season affects the observed well drilling, groundwater extraction, or land fallowing

in the dry season.
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Figure 3: Timing of forecasts from different projects
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Note: This figure shows when each project tends to announce its forecast information. The arrows in the figure show when
each agency announces a forecast. The forecasts on the top of the timeline are announced by the SWP, and the bottom ones
are announced by the CVP. Dotted lines reflect times when forecasts are only sometimes announced.

I construct the three periods of shortfall information by distilling the information from the government’s
complicated sequence of forecasts. In figure [3| I show the average forecasting behavior for the state and
federal government, and how I translate the information into three pieces of shortfall information. The
arrows in the figure show when each government agency announces a forecast. The forecasts on the top
of the timeline are announced by the SWP, and the bottom ones are announced by the CVP. Dotted lines
reflect times when forecasts are only sometimes announced.

In my main specification, I use the previous year’s shortfall as the baseline information, so that the
baseline is available and comparable across all districts, and occurs before major agricultural decisions are
finalized. I am primarily constrained by the CVP forecasts, which occur late in the planting season. For the
mid-season shortfall information, I use the forecast announced around late-February and the beginning of
March. Both governments nearly always announce a forecast at this time, and it occurs around the second
major planting time in the Central Valley. Then, I use the realized shortfall, which is announced in May for
SWP contractors and June for CVP contractors. I show results using different baselines in the appendix.

The 3, e™4 and €% in figure [3| shows how the shortfall information corresponds to the variables I will
use in the main estimating equation. For the level mid-planting season shortfall forecast and final shortfall, I
use updates rather than levels to capture the effect of new information. I define the update as the difference
between the newest and previous information. €™ for example corresponds to the difference between the
March shortfall forecast and the baseline shortfall forecast, and positive updates mean the shortfall became
worse.

Figure |§| shows the variation in updates across forecasts for three different contracts present in the data. I
plot e™id (the left plot) and £'2* (the right plot) for districts with the standard State Water Project contract,
the south-of-delta Central Valley Project contract, and the Central Valley Project contract to water on the
Friant Canal. When the line falls above zero the shortfall is positive, which is bad surface water news. The
news across contracts is correlated, showing that districts get hit with high and low surface water years at
the same time. For mid-year forecast updates, the correlation between the lines range from 0.57 and 0.71,
and for late forecast updates the correlation ranges from 0.18 to 0.52. Despite the high correlation, there

remains a considerable amount of variation in how districts’ surface water allocations evolve throughout the
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Figure 4: Variation in the data: e™9 and £'®* for three major project contracts

Mid-planting € Late-planting €

Mid-season shortfall update
Late season shortfall update
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year year
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Note: The plot shows the levels of ™4 (the left plot) and !t (the right plot) for districts with the mid-seniority State Water
Project contract, the south-of-delta Central Valley Project contract, and the stronger Friant Canal Central Valley Project. The
line falling above zero means that the current surface water allocation forecast is lower than the previous information, or that
the shortfall increased. The plot shows that there is often a lot of correlation between the forecasts, yet there are differences in
the magnitude of ¢, even within the same project.

year.

My main econometric model is shown in equation |1} Ag; is the level of an adaptation action, for example
land fallowing, observed in the dry season in district d in year ¢, given the baseline shortfall forecast and
two shortfall updates. Intuitively, each coefficient of interest, 51, B2 and B3, reflects the percent change in
the district’s number of acres fallowed. The difference in the coefficients reflects acres fallowed due to a
marginal increase in forecasted shortfall at different times in the planting season. I will identify the effect of
information on adaptation levels if there are no unobserved factors varying at the district-year level affecting
both deviations in information and deviations in adaptation. I next describe each piece of the estimating

equation in detail.

Agr = exp(Bi1ar + Pocid + Bl + Xap + Ya + Vet + Var) (1)

I estimate the model using PPML because the level of my adaptation actions, wells drilled, acres planted,

acres fallowed, and total water applied, are bounded below by zero, where zeroes reflect meaningful choices

(Silva and Tenreyro, [2006). Poisson regressions naturally represent the aggregation of individual binary

choices (Cameron and Trivedi, 2013)). Groundwater extraction is bounded below by zero, but I observe the

change in depth to the water table, which equals extraction minus natural recharge. To apply PPML to this
variable, I need to isolate extraction as a non-negative quantity. I assume a constant recharge rate equal to the
95th percentile of observed depth changes (25 feet per period), and truncate any depth changes exceeding
this value to zeroE Adding this assumed recharge to the observed depth change yields an estimate of

extraction that satisfies PPML’s non-negativity requirement. I demonstrate in the appendix that results are

14The assumed recharge rate has minimal impact on the results. With OLS, any constant recharge rate would be absorbed
by fixed effects. With PPML, setting recharge below the maximum observed change means some observations are truncated to
zero, but results are robust to alternative recharge assumptions as shown in the appendix.
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robust to using different and location-specific recharge rates. I also show the distributions of the dependent
variables in appendix figure

X is a set of district-year specific controls that control for endogeneity between the forecasts and the
adaptation choice. There are three main sources of endogeneity. The first is peer effects: one district’s
response to surface water availability sometimes affects other districts’ responses. Peer effects is especially a
problem for well drilling which has a fixed number of contractors in the short-term, so that a higher demand
for wells may increase the price, and certainly increases the wait time. Therefore, I include neighboring
districts’ well drilling decisions, and neighboring districts’ groundwater extraction as a control in X for
the respective regressions. The second source of endogeneity comes from local weather and alternative
water sources, which are both correlated with surface water allocation forecasts and likely with adaptation
decisions. So, for all three choices I include controls for temperature, precipitation, and streamflow forecasts
and realizations, and for lagged depth to the groundwater table when it is not the dependent variable. The
third source of endogeneity is that there is some autocorrelation in the forecasts which might correlate with
past capital-intensive decisions like perennial planting and well drilling, which affect current decisions through
the diminishing returns to wells, and switching costs (Scott, [2014). T account for this source of endogeneity
by including the lagged perennial acreage in districts, and the lagged cumulative wells in districts in the
crop and well choice regressions respectively. Despite potential endogeneity concerns, the results are robust
to whether controls are included or not.

For some analyses, alternative adaptation decisions might pose a source of endogeneity. Because adap-
tation decisions might be substitutes or complements, each Ay modelled by equation is one of several
simultaneous equations. Consider the choices of crop fallowing and groundwater extraction. If crop fallowing
is the dependent variable, and I control for groundwater extraction, each g isolates the direct effect of surface
water shortfalls on crop fallowing. If T fail to control for groundwater extraction, then S also captures how
shortfall increased groundwater extraction, and then how groundwater extraction changed fallowing. In my
analysis, I actually do not want to control for these mechanisms because they reflect part of the adaptation
response. However, I compare the main results with those controlling for alternate adaptation decisions using
the control function approach (Imbens and Newey, [2009). I describe the methods and results in Appendix
B

Finally, v4 is the error term. In my main specifications, I cluster standard errors at the contract level
because surface water forecasts differ at the contract level. I designate each district with a different pattern
of surface water forecasts as having a different contract, giving me 33 contracts in my dataset. I use
cluster bootstrapped standard errors due to the modest number of clusters (Cameron et al. [2008). In other
forecasting papers, the treatment (weather) is not applied to a specific location, so spatial-correlation-robust
standard errors are usually more applicable (Shrader, 2023]). In robustness checks, I employ a combination
of |Conley| (1999) and Newey and West| (1987)) standard errors with various distance cutoffs and time lags to

show that my results are robust to multiple standard error specifications.

3.2 Results

I motivate my main results by showing that in the raw data, farmers act decisively in years with high surface
water shortfalls. Figure [5| shows a simple raw-data binscatter of wells drilled, idled land and the change in
depth to the groundwater table on the final surface water shortfall percent. The raw data relationships are

displayed in figure |} Higher shortfalls correlate strongly with more well drilling, more idled land, and more
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Figure 5: Raw data binscatter: adaptation actions on final surface water shortfalls
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Note: On all plots, the x axes reflect shortfall, a lower surface water allocation. The left plot shows the average number of wells
drilled, the middle plot shows the average percent idled area, and the right plot shows the change in a district’s average depth
to the groundwater table from the prior year, all binned by the surface water allocation forecast.

groundwater extraction. The main empirical specification will confirm that these patterns are causal, and
also reveal when in the season farmers make different decisions.

In figure [6] I show the causal effect of an increase in shortfall announced in the early, mid, and late
planting season on seven different adaptation actions. I plot three coefficients for each action, corresponding
to the B coefficients in equation The coefficient represents the percent change in an action observed
during the dry season resulting from a one-point increase in announced shortfall in a particular period. The
coefficients are organized by shortfall announcement timing, either the baseline forecast, the mid-planting
season shortfall update, or the late planting season shortfall update. The numerical results are in Appendix
All of the coefficients and standard errors have been transformed to show a percent change in the action
with a one percentage point decrease in the surface water allocation forecast.

The left panel displays the results for the water-conserving choices, specifically, crop selection decisions.
Low-water annuals are denoted by black x’s, high water annuals by red dots, idled acreage by blue boxes
and perennial acreage by yellow diamonds. A positive coefficient means that a one-point increase in shortfall
led to an increase in planted acreage in a particular category. I find that a one-point increase in shortfall in
any period of the year leads to an average of a .27% increase in idled acreage, a 0.23% increase in low-water
acreage, a 0.26% increase in high-water acreage, and no change in perennial acreage. Thus, districts adjust
about 25 acres for a marginal shortfall shock.

The right panel shows the response of groundwater intensifying actions to surface water allocation short-
fall, which are the percent changed in wells drilled (black x’s), groundwater extraction (red dots), proxied by
the increase in depth to the groundwater table, and the change in total water applied (blue boxes), proxied
with evapotranspiration. A one point increase in shortfall results in a 0.18% increase in well drilling on
average, and a 0.04% increase in groundwater extraction, which is about 2 new wells across all districts,
and about 280 acre feet more extraction. Total water application follows the coefficients for groundwater
extraction, but shows no statistical significance.

The general trends results are consistent with the raw data plots from figure [l In response to surface

water shortfall, farmers take both water conserving and groundwater intensifying actions. All of the crop
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Figure 6: Coefficient estimates on percent changes in actions with a 1 percentage-point change in surface
water information
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Note: This figure shows the coefficient responses to the full specification of equation , including controls for alternate water
sources, neighbors’ choices, and past capital-intensive choices, control functions for other adaptation choices, and district and
climate region-year fixed effects. Each dependent variable listed in the legend is one PPML regression. The points show the
coefficient estimates of a 1 point change in the surface water allocation or forecast available at each of the time periods. The
90 and 95 percent confidence intervals are also plotted. Standard errors are cluster bootstrapped at the contract level.

choices indicate farmers adjust their crop acreage in response to expected surface water availability. Farmers
plant fewer high-water crops, and increase low-water crops and fallowing. As expected, I find little adjustment
to perennial acreage because the opportunity cost of fallowing perennials is high.

My results also reflect important patterns in adaptation across the planting season, especially for ground-
water intensifying actions. Farmers only drill wells in response to early changes in information, and they
only extract additional groundwater in response to last-minute surprises in surface water shortages. For con-
servation actions, most coefficients remain statistically significant throughout the growing season, showing
that farmers continue to adapt with crop choice as they receive new information, although the crop idling
response may be highest in response to information at the end of the planting season.

I next show what my estimates of actions imply about changes in water use. Equation shows the
intuition that farmers can compensate for a change in surface water shortfall by either pumping groundwater,

which imposes external costs on others, or water conservation.

ASurface water shortfall = AGroundwater intensification+

AObserved conservation + AUnobserved Conservation (2)

ATotal water applied

I observe some water conservation actions, but miss many others including shifting planting times, pur-
chasing surface water on the market, storing precipitation, and implementing soil management practices. I
can back out the unobserved conservation component by either using my estimates of changes in total water

applied, or changes in realized surface water shortfall. For the main text, I use the fact that an average sur-
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face water shortfall shock corresponds to a decrease of 180 acre feet of water delivered which I estimate with
actual data in appendix table rather than a modelled proxy variable. I connect observed conservation
actions with changes in water use by making assumptions about water saveﬂ

I show the water change results in figure The bars represent the portion of surface water shortfall
farmers offset through each type of action. The blue portions of the bar chart reflect observed conservation
through land fallowing and crop switching, the yellow bars show unobserved conservation actions, and the
red bars show groundwater intensification.

Early in the year, farmers respond to surface water cuts primarily through conservation. Observed actions
like crop switching and fallowing account for about 25% of the total water reduction, while unobserved
actions such as reducing irrigation intensity comprise the remaining 75%. I find no evidence of groundwater
substitution during this period, suggesting that when farmers have sufficient lead time, they can implement
socially beneficial adaptations at low private cost. In response to surface water cuts announced late in the
season, farmers adapt primarily through groundwater extraction, pumping nearly twice as much groundwater
as the surface water they lost. The striking result is consistent with the total water application results from
figure [6] which showed that early shortfall forecasts correlated with decreased application while late shortfall
realizations led to higher water application.

The dramatic increase in groundwater pumping can be explained by two mechanisms, both driven by
the highly inelastic demand for water after planting. First, agricultural marketing contracts bind farmers to
deliver specific quantities regardless of water availability. A large share of California specialty crop farmers
commit to these contracts before planting, and failing to deliver can result in substantial penalties and
loss of future contracting opportunities (USD) [2024)). When late-season surface water cuts threaten contract
fulfillment, farmers pump whatever groundwater is necessary to meet their obligations, and droughts increase
crop water demand by increasing evaporation (Escriva-Bou et all |2022)). Second, farmers with wells can
profit by selling water when late-season demand spikes. Although formal groundwater markets barely existed
before SGMA, the wave of county-level groundwater export restrictions in the 1990s suggests that long-
distance sales were common enough to prompt legislative responses (Hanakl 2003]). If cross-county sales
were profitable despite transportation costs, local informal trading between neighbors was likely even more
attractive. Late-season shortfalls thus incentivize farmers to pump both for their own inelastic needs and to
sell to others facing similar constraints.

The aggregate water change masks heterogeneity across farmers and water districts. Likely, the late-
planting season result actually reflects two broad types of farmers, one who replaces close to none of her
shortfall, and one who replaces all, or more than all of her shortfall through groundwater intensification. In
section ?7? I study heterogeneity across water districts.

The results paint a broad picture of the way that farmers in California are adapting in aggregate to
short-run surface water scarcity. Early in the planting season, farmers across the state especially take water
conserving actions with lower private costs, like switching from high-water acreage to low water acreage.
These choices decrease water use, supported by the negative (but insignificant) coefficient on total water

application.

15In particular, I assume that low-water acreage uses 2 acre feet per year, high-water acreage uses 4 acre feet per year, and
fallowed acreage uses 0. I do not calculate substitution patterns in this paper, so I make the following assumptions: low-water
acreage is substituted from high-water acreage, and the rest of the high-water acreage change becomes fallowed land. Since I
observe more land fallowing than other changes in acres (I do not include pasture land, or perennial land in this crop choice
analysis), I assume that other fallowed land saves 3 acre feet per year on average. For change in groundwater extraction, I
assume an equal groundwater level change over all planted acres in the district.
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Figure 7: Percent of surface water shortfall shock replaced by each type of action

% of surface water shortfall

Baseline forecast Mid update Late update

Action [l Groundwater intensification Unobserved conservation [JJ] Observed

Note: This figure shows the back-of-the envelope calculations for the percent of a surface water shortfall made up with either
conservation (observed through fallowing and crop switching, plus unobserved through the residual), or groundwater extraction.
To calculate these percentages, I use the estimates from @ combined with the relationship in equation . The y-axis shows
the percent of a surface water shortfall replaced with a particular adaptation practice. I omit any change in groundwater from
new wells.

Late in the planting season, farmers respond differently to shortfall shocks. When water becomes scarce
right before the dry season, groundwater extraction significantly increases, more than offsetting the decline in
shortfall, probably reflecting high water demand and few substitute adaptation options for both well owners
and non-well owners. However, some farmers continue to conserve water especially through land idling.

Late-season shortfalls are therefore socially costly. The loss of 180 acre feet of surface water in one district
results in an average increase in groundwater use by 280 acre feet, enough to supply about 600 households
for a year. If a farmer had received the shortfall shock earlier, there is no evidence she would replace the
shortfall with groundwater. Scaling up to the entire Central Valley where farmers extract about 13 million
acre feet of water annually, a shortfall shock hitting all farmers would result in an increase of 18,000 acre
feet of groundwater.

Although farmers conserve water in response to early shortfalls, they also drill wells. We learned that
farmers might respond to late shortfalls by conserving water or extracting more groundwater, and well
drilling likely shifts the balance of these decisions over time. Understanding how shortfalls result in external
costs requires examining the additionality of wells. I study the well decisions more thoroughly in section [

The remainder of my paper fills the gaps revealed by this section. I first turn to a brief discussion of
the robustness of the main results. Then, I explore the heterogeneity of adaptation responses. Afterward, I
study how shortfalls cause well drilling, and the results of well drilling. Finally, I study the benefits of these
adaptation decisions.

3.3 Robustness checks

My adaptation results are robust to a variety of alternate specifications. Appendix Section presents five
robustness tests for each of the seven adaptation choices. First, I omit all controls. This specification reduces
the statistical significance of groundwater intensifying actions, especially groundwater extraction, though
coefficient magnitudes and directions remain unchanged. I find that controlling for neighbors’ extraction is
important for statistical significance. Second, I add a control function for alternative adaptation choices to the

main specification, effectively shutting down substitution and complementarity channels. The magnitudes of
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groundwater-intensifying actions increase slightly, though not significantly, consistent with the intuition that
holding crop choice fixed would increase groundwater intensification. Third, I use Conley standard errors
to account for spatial correlation within 100 kilometers (slightly larger than the average California county).
Conley errors generally strengthen my results: most coefficients become more significant or retain similar
significance levels. The one exception is the late-season low-water crop response, which loses statistical
significance. However, since low-water crops tend to be planted early, Conley errors actually move my
results closer to my ex-ante expectations. Fourth, I use January shortfall forecasts as the baseline for surface
water information rather than the previous year’s shortfall. I fill missing early forecasts with the nearest
forecast (in space). The exception is high-water crop responses which become statistically significant only in
the earliest period, and well drilling responses which become statistically significant only in the mid-update
period. Neither result changes my story, though better early-planting season data might have revealed more
interesting patterns. Fifth, I estimate the model using OLS rather than PPML. OLS is inappropriate for
most adaptation choices, especially well drilling. Histograms in Appendix figure shows that fitting count
data (wells) and skewed data (groundwater depth) with OLS results simultaneously in too many points being
very well fit and very badly fit. Consequently, most OLS results are statistically insignificant. For dependent
variables better suited to OLS (evapotranspiration and crop idling), the OLS coefficients match the PPML
signs.

Finally, T estimate crop choice using multinomial logit (Appendix Section , with perennial acreage
as the omitted category since permanent crops are insensitive to short-run scarcity shocks. The log-odds
from multinomial logit align in direction with my main specification, confirming that my crop results are

not driven by the unconventional choice of Poisson estimation.

3.4 Heterogeneity by the well stock, high-value crop share, and shortfall direc-
tion

I conclude this section with three heterogeneity analyses to fill in the picture about how farmers adapt. In
the first two tests, I see how adaptation decisions differ in districts with more wells, and with higher shares of
high-value cropland. These tests clarify whether different farmers use different types of adaptation. The last
heterogeneity test examines whether farmers respond differently to positive and negative shortfall shocks.
In my main specification, I estimate the effect of a linear shock on adaptation. However, the social cost of
adaptation differs if farmers respond asymmetrically to positive and negative shortfalls.

I first examine adaptation in districts with different amounts of wells. Districts with more wells have
the option to extract more groundwater, which might affect the private value of conservation. To test the
heterogeneous response, I interact the three components of surface water shortfall from equation with an
indicator for a district being in the second or third tercile for wells per acres of cropland. I allow a district’s
category to change over time so that I can compare districts to themselves because there is selection across
space.

The results for the effect of the well stock on crop idling is in the top row of figure (8} I show the analogous
plot for groundwater extraction in appendix figure Districts with the least number of wells idle more
land in preparation for shortfalls than districts with more wells. Having wells appears to lower the private
value of conservation. Groundwater acts as a backstop resource during dry years, when surface water prices

increase much faster than groundwater costs. When a farmer gets access to groundwater, her costs saved
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through conservation decreases.

The middle plot shows how the intensity of crop idling decisions varies across districts with more high-
value crop acreage. This heterogeneity test will capture how adaptation decisions vary based on the oppor-
tunity cost of fallowing. Although high-value acreage and the well stock are jointly determined, less than
half of the district observations have both variables in the same tercile. I find a similar pattern as the well
drilling results, but with much more precise estimates: districts with the lowest percentage of high valued
crops idle the most land.

Overall, I find that districts with the most wells and districts with the fewest wells adapt in nearly
opposite ways. This means the overall adaptation patterns shown in my previous results don’t represent
what a typical district does. Instead, they reflect an average across districts that are actually behaving quite
differently from each other. This is the first evidence in my paper that long-term decisions shape short-term
adaptation patterns. Because wells are permanent, each well-drilling decision likely pushes farmers toward
relying more heavily on groundwater over time. I explore this long-term shift in greater detail in the next
section.

In the final heterogeneity test, I examine whether farmers have different adaptation responses to good
and bad news about surface water shortfall. T interact the two shortfall updates with an indicator for whether
the update was positive (bad news). Since positive updates are rare, I also define a 0-shortfall decrease as
bad news, given a bad initial forecast (greater than 40%) since the shortfall forecast nearly always declines
across the planting season. The results are in the third row of figure

Farmers exhibit a pronounced asymmetry in their responses to water availability shocks: they adapt far
more aggressively to positive shortfall news (bad news) than they scale back adaptation when conditions
improve. This pattern is particularly evident in the groundwater extraction result in appendix figure |B.1
Groundwater extraction decisions only apply to positive shortfall. Land idling decisions show a similar
pattern, more than doubling in response to negative shocks. Therefore, adaptation to shocks lead to increased
groundwater use and idling from the no-shocks baseline over time.

The whole of section [3|has pointed to groundwater intensive adaptation, and the potential for increasingly
groundwater intensive adaptation as the well stock increases. Since the majority of groundwater basins
remained virtually unmanaged throughout the entire study period spanning from 1967-2022, farmers did not
internalize the social costs of their yearly adaptation. The social benefit of adaptation came at the cost of

enormous amounts of lost resource wealth.

4 The well investment: agricultural adaptation in the presence of

an unregulated aquifer

Section [3| showed that agricultural adaptation to short-run shocks was socially costly because of heavy
substitution toward unmanaged groundwater. At the same time, districts drilled wells, especially due to
shortfall shocks early in the planting season. While well drilling does not directly impose social costs, the
previous section already showed evidence that a higher well stock correlates with substantially lower water
conservation. In this section, I explore the external costs arising specifically from the well drilling decision.

Since wells are a permanent investment, any social costs deriving from a well drilled because of a shortfall

shock in one year might last for several years. The duration of the external costs arising from the shock
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Figure 8: Heterogeneous crop idling responses
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Note: These figures show the results of the three heterogeneity tests in the data. In each regression, I interact the shortfall
information from the main estimating equation with a different district or information characteristic. The dependent variable
is the number of idled acres in the district, and the coefficients should be interpreted as approximately the percent change in
idling for a one percentage-point change in the shortfall. The first plot shows the difference in idling response depending on
the district being in the lowest, middle or highest tercile of wells per acre of cropland. The second plot shows the difference in
idling response across districts in the lowest, middle or highest share of high-value cropland, defined by vegetable and perennial
acreage. The final plot interacts the shortfall updates with an indicator for whether the update was an increase (bad shortfall
news) or a decrease (good shortfall news).
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depends on when a well would have been drilled absent the shock. Therefore, I begin the section by studying
the additionality of wells.

Then, I examine where the external wells come from, by studying how new wells causally change farmers’
behavior. Drilling a well changes the characteristics of the choices in the adaptation choice set, both by
allowing the groundwater extraction choice, and by permanently decreasing the downside risk of high water
prices. In particular, I study whether well drilling affects crop choice behavior over the span of several years.

Broadly, in this section I shift from examining how farmers adapt to exploring the consequences of their
adaptation choices, a key reason for knowing how farmers adapt. Yet, in answering these questions, I will
additionally learn about adaptation to long-run water scarcity, and why farmers take the well drilling decision

over other decisions, completing my analysis about ‘how’ farmers adapt.

4.1 Are wells drilled in response to short-term shocks additional?

In this subsection, I study whether wells drilled in response to short-term shocks are additional, and for
how long. In answering the question, I will learn how long behavior changes from a short-run shock lasts,
important for measuring the persistence of external costs.

To study additionality, I trace the dynamic impact of a one-time surface water shortfall shock on the
stock of wells in a district using local projections (Jordal [2005). I estimate the impulse response of a surface
water shortfall shock in year ¢ on the cumulative stock of wells in a water district over horizons h = 0,1, ..., H
(i.e., from year t through year t + H), relative to the pre-shock baseline. The key identification assumption
is that surface water shortfall shocks are exogenous conditional on past information, meaning the shock in ¢
is not affected by contemporaneous well-drilling decisions (Jordal 2023). The estimating equation is similar
to equation , where the major difference is that the dependent variable is the sum of wells drilled in a
district from year ¢t to year t 4+ h. I also include two lags of the number of wells drilled and the previous
shocks, which is standard in local projections for ensuring the exogeneity of the shock and correcting for bias
in the standard errors (Montiel Olea and Plagborg-Mgller, [2021). I then run H = 10 separate regressions.

I plot the effect of the shortfall shock over time in figure[9} Each plot shows the path of coefficients for one
of the three shortfall components, and the points are the coefficient estimates for each of the time horizons,
h=0,1,..., H. The first point, for h = 0, corresponds to the year the surface water shortfall shock occurred,
and is hence virtually the same as the short-term adaptation effect from figure For the information
that farmers responded to with well drilling, the initial surface water allocation and mid-year update, the
cumulative number of wells in a district decreases monotonically after the shock occurs, and levels off at
no effect after 3 years for the baseline forecast and 5 years for the mid-year update. Since farmers would
not have drilled wells immediately after the shock, there are persistent social costs to drilling if wells affect
farmers’ behavior.

Wells shifting forward in time matters especially because continually, new farmers shifted their wells
forward in time across my period of study. The reason shortfall shocks contributed to continuous new wells
is because the value of wells increased steadily over time. I explain the intuition using a simple well value
function in equation :

16The coefficient estimates differ from the main specification because of the local projections controls.
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Figure 9: Dynamic well drilling response to surface water allocation shocks
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Note: This plot shows the local projections estimates of the cumulative number of new wells in a district in the years following

a surface water shortfall shock in year zero. A coefficent of zero shows that the number of wells drilled is the same as the
expected trend.
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stopping value

A farmer chooses to drill a well when the value of drilling now is greater than the value of waiting. Three
inputs determine the farmer’s decision, the current year’s forecasted shortfall §, the expectation of the future
average shortfall 5, and the well cost C. The outcome of decision has two terms. The first is the current
year’s profit, which depends only on the realized shortfall this year, and whether or not the farmer has a
well. The value of a well increases when shortfall is higher. The second term is the expected value function
in the next period. The stopping value is the expected sum of profits throughout time, given having drilled.

Even if a shortfall shock conveys no information about long-run surface water availability, a sufficiently
severe short-term shock could induce a farmer with a relatively high stopping value to drill based solely on
current-year profit considerations. If the value of having a well increases over time (though an increase in
5), new farmers will choose to drill in response to short-term shocks.

A long-run increase in well values is unlikely to be driven by the shortfall shocks themselves, as evidenced
by the absence of permanent effects in the local projections results. If shortfall shocks were updating farmers’
beliefs about long-run water availability, they would permanently shift the net present value of drilling upward
for all farmers, accelerating drilling decisions and producing a persistent effect. Therefore, some other time-
varying factor, such as declining surface water availability and the increasing price of perennials has driven

the increase in long-run well valuesm In appendix section I prove that the well stock permanently

17 Also in appendix sectionI show the strong trends in increasing shortfalls and increasing perennial prices, as well as the
nearly linear increase in cumulative wells drilled over time.
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increased for water districts with contracts subject to a regulation that permanently shifted 14% of their
surface water to environmental uses in 1992.

The wells drilled in response to shortfall shocks are a key piece of the story of short and long-run
agricultural adaptation in California, driving persistently higher well stocks even if a specific farmer only
drills a few years early. In any case, there is still a real social cost to drilling wells early. Farmers can extract
groundwater earlier, and are incentivized to make other production adjustments earlier. Therefore, society
bears the costs of externalities from extraction starting this year rather than several years from now, and

eliminating more future scarcity rents under regulation.

4.2 How does well drilling affect future cropping choices?

Well drilling has social costs if wells incentivize farmers to switch to more socially costly behavior. Two
primary ways farmers might change behavior is through new groundwater extraction, and switching crops.
There is actually no data for extraction from specific wells in California, a challenge other papers have
overcome in creative ways (Burlig et al.; 2020). Therefore, it is actually not obvious how much a farmer
would extract from a new well. I answer the question in detail in appendix section [B.7} where I show that
farmer extract on average up to the capacity of a small commercial agricultural well across all water years, a
significant shift in water use. However, since wells increasing extraction is obvious, I focus on farmers’ crop
switching behavior after drilling.

Well drilling imposes social costs if it incentivizes farmers to adopt more socially costly behaviors. Farmers
might change their behavior in two primary ways: by extracting additional groundwater and by switching
to different crops. California lacks well-specific extraction data, a challenge other studies have addressed
through creative approaches (Burlig et al.l [2020), making it unclear ex-ante how much farmers extract from
new wells. In appendix section [B.7} I show that farmers extract on average up to the capacity of a small
commercial agricultural well across all water years, which is a substantial shift in water use. Since farmers
drill wells in order to extract groundwater, I focus on the question with the less obvious answer: do farmers
change what they grow after drilling?

Crop choice matters independently of groundwater extraction levels. Perennial crops have higher oppor-
tunity costs of fallowing because they take several years to reach peak fruit production and remain productive
for several decades, meaning that fallowing sacrifices both the sunk establishment costs and many years of
future returns. Perennials are also highly profitable. Consequently, a farmer with a new well might switch to
perennial crops to increase profitability, simultaneously locking herself into watering her fields even in very
dry years.

Studying how wells cause crop shifting requires both dynamics and instrumental variables. I study
the crop decision dynamically because farmers often cannot switch crops immediately. I use instrumental
variables because the value of crops directly determines the cropping choice, and the value of a well.

Local projections can be combined with instrumental variables analysis straightforwardly, by performing
two-stage least squares in each of the H local projections regressions (LP-IV) (Jorda et al., [2015). The
independent variable of interest is the projected number of new wells in a county, and the dependent variable
of interest is the level change in acreage in a particular crop j between year ¢ to t+h. In the local projections
framework, the standard IV exogeneity requirement requires that the instrument should only be correlated

with the contemporaneous shock and not with leads or lags of the shock (Stock and Watson| [2018). Including
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lagged well drilling as controls helps address potential violations of this assumption by accounting for the
predictable component of drilling activity.

To isolate the effect of new wells on crop choice, I use well-specific supply shifters as an instrument. I
construct the instrument from the interaction of two variables that capture different well supply shocks. The
first measures market power in well drilling. Higher market power should increase well prices, holding all else
equal. In my main specification, I measure market power by counting the number of well drilling contractors
operating in each area. Specifically, I define a contractor as an entity that drilled at least two wells over
the sample period. I determine each contractor’s operational area as the 25-kilometer buffer around the
convex hull of all wells they drilled, and operational lifetime as the time between drilling their first and last
well. T then count how many contractors’ operational areas overlap each location in each year, capturing the
number of drillers capable of serving an area at a given time. This approach separates the supply measure
from well demand in two ways. First, not all contractors drill wells every year, so the count reflects potential
supply capacity rather than realized demand. Second, contractors cannot enter the market immediately due
to certification requirements and machinery investments, creating a lag between demand shocks and supply
responses. In robustness check, I alter the buffer, alter the definition of the time in business, and redefine
market power using the Herfindahl-Hirschman Index (HHI) over the number of wells drilled in a particular
year.

The number of contractors varies across space and time, though the spatial pattern of the number of
contractors remains similar which might correlate with well demand. Thus, I interact the market power
variable with well input prices. For my main analysis, I use yearly steel piping prices from FRED, since large
diameter steel piping is common for well casing for agricultural wells. I check for robustness to other well
inputs including oil drilling machinery prices (a proxy for water well drilling machinery) and plastic piping
prices (PVC casing is common for smaller agricultural wells).

Studying the dynamic effects of well drilling on cropping decisions using local projections would require at
least 50 years of data to avoid bias (Herbst and Johannsen| |2024), longer than the crop data span in the main
analysis. Therefore, I use county-level data from California’s Agricultural Commissioner, the longest panel
of harvested cropland available for California, spanning from 1980 to 2022 (CA Agricultural Commissioner,
National Agricultural Statistics Service, [2025)). I aggregate the same control variables used previously to the
county level.

Equation (??) shows the first stage of my instrumental variables specification. Y; is the number of wells
drilled between January and August. N denotes the number of contractors, and P; denotes the input
prices. The excluded instrument is log(N,;) x P;. I leave prices in level terms because it is the indexed price
since 2010. I include all of the controls as in the district-level estimation, X.;, but use county and year fixed
effects. I leave the well decision in linear terms because there is no clear way to transform the dependent
variable given many zero values (Chen and Roth| [2024). T show the results of the first stage estimation in
table [

Yoo = a1 log(Ney) x Py + aglog(Ney) + Xer +ve + v + ver 4)

The first stage results show that the well supply variables empirically affect the number of wells in an
intuitive way. The first column regresses the number of wells only on the well supply variables, to show

that in the raw data wells respond negatively to steel piping prices, and positively to contracts. The second
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Table 1: First stage and reduced form: wells drilled in response to well prices

First stage Reduced Form (Perennial)
M ) ) @ G)

Log contractors x Steel pipe index 0.05* 0.07* 0.07* 48.86** 48.62**

(0.03) (0.04) (0.04) (20.14) (20.09)
Log contractors 0.84 8.15 8.23 7204.03** 7395.39**

(2.46) (6.58) (6.52) (3384.79) (3423.74)
Steel pipe price index -0.19

(0.12)
F-stat 39 30 39 NA NA
Controls no no yes no yes
County FEs no yes yes yes yes
Year FEs no yes yes yes yes
Standard Errors Conley-NW  Conley-NW  Conley-NW  Conley-NW  Conley-NW
Num. obs. 2223 2223 2223 2223 2223
R2? (full model) 0.05 0.66 0.67 0.48 0.48

< 0.01; **p < 0.05; *p < 0.1

Note: The first three columns show the first stage for how the number of wells are affected by the instrument. The last three
columns show the reduced form for how the number of perennials three years after new wells are drilled is affected by the
instrument. The instrument is the first row, the interaction of the number of contractors and the current steel pipe price. The
other two variables are included in the regression. Each column adds stronger fixed effects or controls. (1) has no controls
or fixed effects, meant for building intuition. (2) adds year and district fixed effects and (3) adds all of the controls. I use
a combination of Conley standard errors (100km) and Newey-West standard errors (2 time lags) because the treatment is
correlated across space and time.

and third columns include the appropriate fixed effects. Overall, as the number of contractors increases in
a district relative to the district’s average and that year’s average, the number of wells drilled increases.
Therefore, adding more contractors appears to actually shift the well supply curve out. The direction on
the coefficient of the actual instrument is not ex-ante obvious. I find a positive coefficient on the instrument
in the first stage, showing that districts with more contractors are less affected by increases in steel pipe
prices. The instrument is statistically significant across all specifications, and has a high F-stat of nearly 40
in the main specification. The next three columns show the results of the reduced form estimation, where
the dependent variable is the third lead of perennial acreage. Factors that increase wells in year ¢ strongly
increase perennials in year ¢ + 3.

The instrument induces a small shift in well drilling costs, affecting farmers whose well values are close
to the drilling threshold. Given that well values are increasing over time, these marginal farmers would
likely have drilled within a few years regardless. Therefore, the local average treatment effect captures crop
switching behavior for the most policy-relevant population: those on the margin of drilling in the near term.

Figure presents the second-stage results of the dynamic IV specification, showing how crop com-
position and total acreage change after a farmer drills a new well. Perennial acreage increases steadily by
approximately 200 acres per year beginning in the second year after drilling, while three other crop categories
decline. Total harvested acreage initially falls before returning to baseline or slightly above.

These results reveal a substantial restructuring of farm operations following well installation. The dynam-
ics unfold in two distinct phases. In the first year after drilling, total acreage declines as farmers prepare land

for conversion to perennials. They immediately reduce high-water field crops and vegetables, but because
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Figure 10: Local projections of changes in crop acreage with 1 new well
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Note: Each plot shows the dynamic effect of drilling 1 new well in year ¢ on the change in crop acreage in different categories.
The coefficients are estimated with LP-IV. The error bars show 90 and 95% confidence bounds for Conley standard errors
accounting for spatial correlation within 100 km and temporal correlation within 2 years (since it is a short panel).

newly planted perennials require several years to mature, the perennial effect is precisely zero in year one. In
subsequent years, farmers continue substituting away from all annual crop types toward perennials, and total
acreage recovers to pre-drilling levels. Notably, pasture and hay acreage remains unchanged, consistent with
this category representing a distinct type of agricultural operation less integrated with intensive cropping
systems.

The change in cropping patterns increases groundwater use in three ways. First, farmers shift toward
higher-water crops on average. While some vegetables and high-water field crops like cotton require water
comparable to perennials, low-water field crops require only a fraction of that amount. The transition
from low-water field crops to perennials therefore increases water use in any given year. Second, the high
opportunity cost of fallowing perennials strengthens farmers’ incentives to irrigate even during extreme
droughts when surface water allocations are minimal. Third, total harvested acreage may increase slightly,
expanding the area requiring irrigation.

Combining the dynamic paths of well drilling and cropping decisions, this section demonstrates that
adaptation to short-run surface water shocks drives the persistent expansion of socially costly groundwater
extraction. The mechanism operates through a self-reinforcing cycle: farmers drill wells in response to
marginal changes in well value, then extract an estimated 1,800 acre-feet per year (appendix section 7 a
level consistent with their shift toward water-intensive perennial crops. The increase in well values continually

amplifies this pattern, making adaptation progressively more water-intensive over time. This is confirmed
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by the finding in section [3| that farmers in districts with higher well stocks conserve significantly less water,
revealing how individual adaptation choices collectively undermine water conservation efforts.

Combining the dynamic paths of well drilling and cropping decisions, this section demonstrates that
adaptation to short-run surface water shocks is a key driver in the persistent expansion of socially costly
groundwater extraction. Building on section [Js finding that higher well stocks correlate with reduced
conservation, I show that new wells drilled for adaptation also reshape agricultural choices beyond the
adaptation response. When farmers adapt to a surface water shortfall in a given year by drilling a well, they
not only increase groundwater extraction that year but commit to substantially higher extraction for years
to follow. The failure to manage groundwater therefore creates a dual distortion: it makes both immediate
groundwater extraction and well drilling artificially cheap. Specifically, farmers drill wells in response to
marginal changes in well value and subsequently extract an estimated 1,800 acre-feet per year (appendix
section 7 consistent with their shift toward water-intensive perennial crops.

Section [3] established that farmers adapt primarily through groundwater extraction and well drilling,
while this section demonstrates that well drilling triggers persistent changes in both extraction levels and
cropping patterns, extending the effects of short-term adaptation far into the future. These changes impose
social costs through aquifer depletion.

However, farmers adapt in the way that increases their profit the most. My paper currently can say
nothing about how much society gains and loses from the way that farmers in California adapt. In the next
section, I empirically estimate the total benefit from all adaptation actions to benchmark the external costs

against.

5 Private value of adaptation to surface water scarcity

Throughout this paper, I have shown that farmers respond to information about surface water shortfalls by
taking a variety of conservation and groundwater intensifying actions. I have not shown any evidence yet
for how effective these actions are in recovering lost profits from surface water shocks.

Surface water scarcity is costly for farms. Figure shows how surface water scarcity correlates with
low county-level agricultural profits in the raw data. The left plot shows the binscatter of profits and
shortfall from 1968 until 2004, the period when deflated profits remained relatively constant. The county-
years with the highest profits also had relatively low shortfall. The right plot shows the entire time series
of profits averaged across all counties. Plotted behind the time series are bars indicating ‘dry’ (light red)
and ‘critically dry’ (dark red) years, as declared by the Department of Water Resources. Even when profits
increased dramatically between 2005 and 2015, dry years accompanied profit declines.

In this section, I estimate the value of the entire set of adaptation actions that farmers take, including
those unobserved in my analysis. These estimates contextualize the rest of the paper. First, they provide
a reference point for the external costs documented earlier. Understanding both the benefits and costs
reveals the net welfare implications of current adaptation patterns and, by extension, the potential gains
from improved groundwater governance. Second, I will learn how much farmers gain from undertaking costly
behavioral changes, information useful for designing effective and equitable water policies.

I begin this section by showing how to estimate the private net benefit of adaptation, through extending
the estimating framework in the literature to the multiple forecast components present in my study. The main

intuition is that the profit gained for making the forecast marginally closer to the realization is equivalent
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Figure 11: Raw data plots of profits and surface water scarcity
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Note: The left plot shows a binscatter of profit and shortfalls from the period spanning from 1968 until 2004. This was the
period where crop profits (in 2017 $) stayed relatively constant. Overall, the periods with the lowest shortfalls have the highest
profits. The right plot shows the time series of average profits over time, with drought bars behind the series. The darkest
drought bars show years declared ‘critically dry’ by the Department of Water Resources (the worst rating) and the lighter bars
were declared ‘dry’. Overall, even though profits increase later in the sample, dry periods often experienced declines in profits.

to the benefit of short-run adaptation. Afterward, I apply the framework to data.

5.1 Conceptual framework for the benefit of adaptation

The goal of the conceptual framework is to explain how a marginal increase in accuracy of surface water
information in a particular period of the year identifies the net private benefit of adaptation. The simple
model builds on [Shrader| (2023) by incorporating multiple periods of information and clarifying the role of
the accuracy of the forecast in the benefit of adaptation. After building the intuition, I apply the model to
data.

Farmers take adaptation choices throughout the year based on surface water information available at
a certain time in order to maximize a static profit functionlﬁ As T showed in section |3, farmers take
different adaptation choices at different points within a year, and that the actions in different periods are
not perfectly substitutable. Therefore, I differentiate an abstract action a by the time in the year it is taken,

{early, mid,late}, where actions are more valuable when surface water scarcity s is higher. By the time

*
early

Ex-post adaptation ajq¢e occurs right after the final shortfall is revealed.

that profits are realized, ex-ante adaptation a and mid-season adaptation a; ., are already determined.

The final profits depend on the realized surface water shortfall, s. As defined throughout the paper, the
final shortfall is made up of the shortfall forecast, and the two updates across the year: = § 4+ ¢™id 4 glate,
To simplify the framework, I assume that each component is independent. Thus, the realized profits for one

year is given by:

18The static profit function is not as restrictive as it seems in this context. Standard dynamic models decompose the farmer’s
problem into two parts: choosing capital variables (e.g. well investments), and choosing variable inputs (e.g., annual extraction,
annual crop mix) that adjust annually. My profit function captures the latter, the annual optimization over variable inputs
conditional on the current state, which is identical whether farmers are fully forward-looking or myopic. The framework can
accommodate a profit function that changes over time through time fixed effects
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* *
glax H(S, Qearlys Amid> alata)
late

A simple thought experiment clarifies how the value of adaptation can be measured through forecasts.
Imagine there are two identical farmers indexed by i, j, who end up with the same realized shortfall s.
Both farmers received a shortfall forecast that underestimated the final shortfall, but the first farmer’s
underestimate was slightly higher, 5; < 5;. Farmer i prepared for slightly better conditions, and planted
slightly more water intensive crops. Then, when both farmers receive s shortfall at the end of the season,
farmer ¢ had slightly lower profits. The difference between their profits, given that they both received the
same amount of water in the end, reflects the value of having slightly better information earlier in the season.

I can show formally how the value of the initial forecast affects profits, conditional on the final shortfall,
by differentiating the profit function in equation by §:

dIl  dIl(s) dagg,,  dI(s) dak,, dag,., n dIl(s) da’ 4 dsmid n dll(s) ds
s - * o * * s * amid s A

ds dam”y ds day .. daearly ds day ., ds™ ds ds ds (5)
value of ex-ante adaptation value of mid-season adaptation 1 direct effect 1

The farmer’s profit changes through three channels. The first two combine to make up the value of ex-
ante adaptation. If a farmer faced a marginally higher §, she would marginally change her early adaptation
choice, and because of the substitution across adaptation periods, her mid-season adaptation choice as well.
The value of adaptation is the change in net benefits from the change in actions coming from a change

in information. I recover an estimate of these benefits precisely because I observe profits after all choices

*
early

realized profit with respect to these terms is not zero. Since the shortfall s is defined as the forecast § plus

have been made; given the later shortfall information, a and a} ., are not optimal, so the derivative of
the updates, marginally changing the forecast also changes the final shortfall, resulting in the direct effect
term appearing in the equation.

If T take the derivative of profit with respect to the other components of shortfall information, I would

recover the following information:

dll
PE : Value of ex-ante adaptation + Value of mid-season adaptation + Direct effect of scarcity
S
dlIl . . . .
Temid : Value of mid-season adaptation + Direct effect of scarcity (6)
dll
Jelate . Direct effect of scarcity
3

By using the actual forecasts and realizations rather than the forecast components (8, § + ™ = gmid,
§emidglate — ) T can identify each value of adaptation and the direct effect of scarcity directly. Equation
@ translates the theory into an empirical model. The value of ex-ante adaptation is given by (1, the value

of mid-season adaptation is given by B2 and the direct effect of water scarcity is given by 3.

IL; = B1i + Bad™? + B3s; + v (7)
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Equation gives a true value of adaptation when we define adaptation as the change in profit deriving
from ex-ante actions. However, as defined, the equation can and often will estimate a negative value of
adaptation. Consider again farmers ¢ and j. Now, both farmers received an overestimate of shortfall, except
that farmer ¢’s shortfall forecast was higher: 5; > §;. Farmer 7 fallows a few extra fields. Then, when both
farmers receive s shortfall at the end of the season, farmer i had slightly lower profits because j harvested
closer to the optimal level of fields for the water conditions. The marginal benefit of i’s additional adaptation
was negative.

. . . Ti(s) dai,, .
More generally, consider the first term in equation d'i*(g) — . By assumption,
early

*
aeale

ds

is positive

(a farmer idles slightly more fields with a higher shortfall). Whether this is good for realized profits depends
on the sign of d‘fllj(s) , which ultimately depends on the accuracy of the shortfall forecast. If § > s, then

early
shortfall is already forecasted higher than the realization and marginally increasing the shortfall makes the
dII(s)
da*

early

the farmer would adapt slightly less appropriately than before. However, if § < s, then marginally increasing

information less accurate. < 0; the farmer adapted more than the optimum already. With a higher §,

the shortfall would make information slightly better, and the adaptive actions would be more appropriate.
dIl(s)
da*

early

realizéd value of the shortfall.

> 0 because the farmer would have preferred to take more adaptive actions had she known the

Estimating the equation by pooling situations where the forecast was higher and lower than the
realization will recover the average realized value of adaptation, which itself is interesting. For example, a
negative realized value of adaptation will reveal that over-adapting is more costly than underadapting on
average.

However, in my paper I am interested in the net profit gained from tailoring investments marginally
better. A farmer could tailor her investments better if an erroneously low forecast was marginally higher,
and an erroneously high forecast was marginally lower. Separately identifying the 8 coefficients for these

two cases gives a more intuitive estimate of the benefit of adaptation.

5.2 Empirical Methods

I now apply my conceptual framework to data. I use the best agricultural profits data available, which is
at the county level spanning from 1967 to 2022. I aggregate district-level shortfall forecasts to the county
level, by determining which contracts exist within the county, and weighting the forecasts that correspond
to those contracts by the proportion of water from each project in the county, approximated by the state’s
water modem (Department of Water Resources), 2022)).

Equation shows the estimating equation, analogous to equation , incorporating the intuition that
forecast accuracy matters for my preferred estimate of the value of adaptation. Y.; measures the agricultural
profits in a county, which I construct by subtracting the total agricultural expenses from yearly cash receipts.

Since 9% of profit observations are negative, I opt to use OLS rather than PPML.

se A high se A mid ami high rymid ami
Vi =B+ O HL g+ SIS 1 o e ®
+ Bsct + Xet + e + 7t + et

To measure the value of a marginally more accurate forecast, I interact the two shortfall forecasts with

19When a county has multiple contract types with the same project in one county, I take the average within the project
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an indicator for whether the forecast underestimated or overestimated the realization of shortfall. L2 for
example is the indicator for whether the baseline shortfall was lower than the realization, and H%i¢ is the
indicator for whether the mid-season forecasted shortfall was higher than the realization. In my main results,
since my estimand of interest is the value of the accuracy of the forecast, I combine the estimates so that
B = 3(Blw + /J’i”gh) = Value of ex-ante adaptation.

The variation in equation |8 comes from how the average surface water forecast in a county differs across
the state within a year. The map in figure 77| shows that districts with similar forecasts are often clustered
together, meaning that a lot of the variation across the state will be retained in the county-level dataset.

X includes the same controls as the previous estimation, including temperature, precipitation, depth
to the water table, and long-term adaptation through cumulative wells drilled. I control more carefully for
non-project water rights since my county profits data covers districts with other types of surface water rights.
Particularly, I control for streamflow forecasts. I also control for crop storage and government payments,
which are correlated with revenues and surface water availability (Fisher et al.| |2012) using crop inventory
changes and aggregate government payouts from the BEA data. Given the controls, the 8s can be interpreted
as measuring the change in outcomes due to specifically to changes in surface water shortfall forecasts.

The level profit variable contains numerous outliers and exhibits an upward trend in the second half of the
period (previously shown in ﬁgure, both of which may bias coefficient estimates. To assess how addressing
these issues affects my results, I present five specifications. The first uses the baseline specification. The
second and third winsorize profits at the 2.5% and 5% levels to mitigate outlier effects. The fourth and fifth
winsorize to the 2.5% level and then address the profit trend: the fourth interacts county fixed effects with
an indicator for the post-2005 period, while the fifth restricts the sample to data prior to 2005, when profits
began their upward trajectory.

5.3 Results

I plot the net private benefit of early and mid-season adaptation and the direct effect of water scarcity across
five specifications in figure The coefficients on early and mid-season adaptation reflect the benefit, in
millions of dollars, of having made the forecast marginally more accurate during the period. The coefficient
on the direct effect of shortfall measures how an increase in shortfall affects profits.

The private value of early and mid-season adaptation remains consistent across all five specifications.
Early adaptation has no detectable effect on profits, while mid-season adaptation yields approximately
$500,000 per one-point improvement in forecast accuracy, which is roughly 0.3% of a county’s total profits.
In contrast, the estimated direct effect of shortfall varies considerably across specifications. Controlling
for outliers and trends drives the shortfall coefficient toward zero. While the estimate is never negative as
might be expected if surface water scarcity imposed costs, the lack of stability across specifications precludes
meaningful interpretation.

The zero-value of early adaptation indicates that marginally more accurate early shortfall forecasts do
not increase farm profits. One possible explanation is that early forecasts are too inaccurate for farmers
to rely on as meaningful signals. However, section |3| shows that farmers do respond to early information
with observable actions. A more plausible explanation is therefore that early forecasts arrive sufficiently
in advance of the dry season that farmers have flexibility to adjust their decisions as updated information
becomes available. In contrast, mid-season forecast accuracy has positive value, meaning that farmers are

better off if the mid-season forecast is closer to the realization. Although I cannot estimate how much
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Figure 12: Private benefit of adaptation
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Note: This plot shows the estimated private value of early adaptation, estimated from the average of ﬁ{"w and ﬁ? 9 h, mid-season
adaptation, from the average of Béow and ﬁg”gh, and the direct effect of adaptation, from B3 from equation . For the values

of adaptation, the y-axis shows the change in profit from the shortfall forecast being one point closer to the actual shortfall.
The direct effect shows how increasing the shortfall affects profit. Each coefficient shows a different specification. The first is
the standard specification without addressing the outliers and trends in the profit variable. The second specification winsorizes
the profit variable on both ends at the 2.5% level. The third specification winsorizes at the 5% level. The fourth interacts the
county fixed effect with an indicator for being late in the period. The fifth uses the subset of data only until 2005, after which
profits begin to steeply increase. Overall, the direct effect is sensitive to the specification, which is not surprising given the
spread of the profit variable. The estimates for adaptation are consistent across specifications, however.

farmers adjust inputs at the end of the season to avoid losses because I can never see the no-adjustment
counterfactual, the mid-season adaptation value can be interpreted as the value of being able to adjust
inputs in the mid-season rather than the end of the season. In contrast, mid-season forecast accuracy has
positive value, indicating that farmers benefit when mid-season forecasts more closely match actual water
availability. While I cannot directly estimate end-of-season input adjustments, since the counterfactual of no
adjustment is never observed, the positive mid-season adaptation value reveals the benefit of shifting farm
decision making from the late to the mid-planting season.

To solidify the intuition, we can imagine a farmer who gets a low baseline forecast and plants a low-water
winter crop to conserve water for her main summer plantings, some of which she might have to forego anyway.
However, throughout the winter she gets news that there will be more surface water allocated than expected.
The farmer has time to make use of the extra water by either planting all of her fields with a second crop in
June, or even by planting a more water-intensive crop than previously planned, making up the vast majority
of the profits from the bad forecast. In contrast, in response to a bad shortfall forecast in March, she plans
to plant a portion of her fields in beans instead of tomatoes. However, when she gets better water news in
April, she cannot switch to the more profitable crop, and those fields also cannot be double-cropped due to
planting timing. She faces lower profits than if she had better information. Therefore, the value of ex-ante
adaptation rises after the early planting season, and falls after the mid-planting season, driven by increasing
constraints, and possibly improving information, as the dry season approaches.

Despite private profits being fully adjustable after decisions are made early in the year, some early choices

lock farmers in to socially costly behavior. In particular, farmers drill more wells in response to early shortfall
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shocks. My results suggest that farmers do not get substantially extra benefit from making a drilling decision
in January versus March, likely because their well would likely be completed by the dry season either way.
However, if the farmer waited until March to drill, the social cost might be lower: good news about water in
March might result in delaying drilling for a year, which would delay the farmer’s transition to perennials.
However, combining these results with those from the previous sections, the dominating pattern is that
earlier adaptation, especially in the mid-season, is both privately valuable and relatively less socially costly.
Late-season adjustments are less privately valuable and more socially costly. In the final section, I discuss

what the alignment of private and social benefit means for policy and the impacts of climate change.

6 Discussion: the benefits and costs of agricultural adaptation to

surface water scarcity

6.1 The external costs and benefits of short-run ex-ante adaptation

Farmers and society benefit when farmers can adapt early to surface water scarcity in California. When
farmers receive shortfall information during the mid-planting season rather than late in the season, they
extract less groundwater and earn higher profits, though they become slightly more likely to drill new wells.
Each section of my paper quantifies one component of these benefits. Section [3| estimates how groundwater
extraction changes when farmers receive information at different times. I calculate the statewide value by
multiplying this change in groundwater depth by total groundwater use and the average externality cost.
Section [4| examines well drilling decisions, showing that new wells remain additional for several years and
increase water extraction. I value this effect by multiplying the additional groundwater use by the average
externality cost. Section [5|directly estimates farmers’ private profit from receiving information early. Figure
synthesizes these findings by showing the total benefit, to both farmers and society, of providing shortfall
information during the mid-planting season rather than the late-planting period, for a 1-point increase in
water shortfall, using $40/acre-foot as the average externality of groundwater use in the stat@

Even using assuming a small externality, the benefits from avoided groundwater dominate the value of
ex-ante adaptation. About 63%, and 43 million dollars in benefit comes from farmers taking more conserving
actions in the mid-planting season. The rest comes from the benefit farmers get from being able to better
tailor their actions. A study focusing only on farmer benefits of adaptation would have missed more than
half of the adaptation value. Shifting the shortfall shock to the mid-planting period comes at the small cost
of about 3.5 additional wells across the state, creating about $0.7 million dollars worth of damage.

In the case of short-term adaptation, farm and social benefits align. Better mid-season water forecasts
increase farmers’ profits while reducing external costs. This is good news in many politically constrained
governments: investing in improved forecasts is often feasible even when managing aquifers is not, and there

are sizable benefits.

20440 is the per-unit extraction fee charged under the Sustainable Groundwater Management Act for districts who did not
establish their own fees |Vad| (2024]). However, transition fees, the fee that agencies apply on water excess of safe yield in order
to curb excess extraction (socially suboptimal useage), is a more intuitive proxy for an externality. These transition water
fees range from $90 to $210 (Greenspan et al.l |2024). I would use an estimated value if it existed. A few papers discuss
the externality in their empirical analysis. (Sears et al.l [2017) shows the implied relative groundwater externalities through
differences in groundwater pumping. Like my paper, (Bruno et al.| |2024) identifies channels through which adaptation leads to
externalities in California.
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Figure 13: Value of farmers adapting in the mid-season period vs. ex-post
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Note: This plot shows the estimated value of giving farmers information about a marginal surface water shortfall shock in the
mid-planting period rather than the late-planting season period. The benefit from avoided groundwater comes from section
where I found that in the late-planting period, groundwater depth increased by 0.07%, approximately 9% of the standard
change in groundwater depth, versus close to zero in the late-planting period. I multiply this change by the average groundwater
use in agriculture (12 million acre feet) and an estimate of the value of the externality. The private net benefit comes from
section where I found that the average county earned $0.55 million more when the shortfall forecast was more accurate. The
external cost from wells comes from the average increase in wells across the state from a shock in the mid-planting period (~
3.5) multiplied by the increase in groundwater use from a well, the length of time the well is additional, and the value of the
groundwater externality.

However, climate change directly undermines short-term water forecasting capabilities. In California,
surface water shortfall forecasts improved steadily until the mid-2000s, when accuracy began declining. By
2022, the 5-year rolling standard deviation between February and May shortfall forecasts for the State
Water Project had deteriorated to 1994 levels (see appendix figure . This erosion of forecasting accuracy
represents an often-overlooked cost of climate change: it diminishes our capacity to adapt effectively. The

Department of Water Resources’ plan to improve forecasts is therefore a policy with potentially significant

social benefits (California Department of Water Resources, [2020).

6.2 Externally costly adaptation

While short-run ex ante adaptation to surface water shortfalls in California generates social benefits, ex post
and long-term adaptation often impose substantial social costs through excessive groundwater extraction.
Farmers face only the private cost of pumping groundwater, while the full social cost includes two addi-
tional components: physical externalities such as land subsidence and water quality degradation, and the
intertemporal scarcity rent representing the opportunity cost of current versus future extraction.

The absence of effective groundwater regulation, combined with climate change, creates a compounding
problem. Climate change accelerates groundwater depletion through two mechanisms: it incentivizes both
greater extraction from the existing stock and increased investment in extraction capacity. This excess
current adaptation erodes farmers’ future adaptive capacity, leaving them more vulnerable to subsequent
climate shocks. Simultaneously, as climate change increases the future marginal value of groundwater for
adaptation, current extraction destroys even more resource wealth.

The climate adaptation literature studying agricultural responses to climate change typically abstracts

away from how farmers adapt, thereby overlooking both the external costs of adaptation and whether
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adaptive capacity persists over time. My research reveals that these external costs are substantial. During
ex post adaptation, over 75% of farmers’ adaptive response generates external costs. In aggregate across
California, farmers’ ex post response to a marginal surface water shock increases statewide water use by
nearly 3%, approximately 1 million additional acre-feet annually@

Moreover, adaptation has become increasingly water-intensive over time. Farmers respond to a 1%
increase in well value with at least a 0.7% increase in drilling activity, while surface water shortfalls accelerate
drilling timelines by 3 to 5 years. Each new well imposes large external costs through immediate increased
extraction, reduced conservation incentives, and expansion of perennial crops—externalities that likely sum
to $1.4 million in present value for a moderately-sized commercial well@ Yet farmers currently pay only
$50,000 to $500,000 to drill a well. The marginal well owner has the lowest-valued current use, and therefore
appropriates groundwater from much higher-valued future uses, exemplifying the misallocation inherent in

unregulated common-pool resources.

7 Conclusion

This paper examines how California farmers have adapted to growing surface water scarcity and what
their adaptive strategies mean for long-term sustainability. My analysis focuses on farmers’ responses to
government forecasts of yearly surface water shortfalls. I categorize their adaptation into two types: water-
conserving actions like crop switching, and groundwater-intensifying actions like well drilling and increased
pumping. While farmers pursue both strategies, they rely much more heavily on groundwater extraction
when responding to late-season shortfall announcements.

One key finding is that farmers adapt in the short run by drilling wells earlier than planned. Surface
water shortfalls accelerate drilling decisions by 3-5 years, and new farmers continue entering the well market
because well values have been rising throughout the study period. Once farmers drill, they shift toward
more water-intensive crops and immediately increase extraction. Areas with higher well density also show
less water conservation. The overall pattern is clear: adaptation to surface water scarcity in California has
become increasingly groundwater-dependent over time.

Farmers’ short-run ex ante adaptation, planning ahead for anticipated shortfalls, delivers considerable
private benefits while imposing relatively modest social costs. Therefore, restricting groundwater access
need not eliminate farmers’ capacity to adapt. Yet, the prevailing pattern in adaptation over time is that
farmers have undermined their own future adaptive capacity through both current overdraft and accelerating
investment in extraction infrastructure.

Ultimately, this research demonstrates how climate change and common-pool resource problems amplify
each other. Unregulated groundwater access undermines the long-term value of climate adaptation, while
climate change accelerates the race to deplete the resource. My paper demonstrates the increasing value of

regulating both common-pool resources and mitigating climate-change.

21The calculation: 0.07% represents about 9% of average total extraction. With yearly average groundwater use of 12 million
acre-feet, ex post adaptation adds roughly 1 million acre-feet, or 3% of the 30 million acre-feet used annually.

22Based on estimated annual extraction of 1,800 acre-feet per well, discounted at an average externality of $40 per acre-foot,
yielding a net present external cost of $1.44 million.
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Figure A.1: Range of shortfall within a year and across years
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Note: This figure summarizes the surface water allocation shortfall variation within a year and across years. For the within-year
variation, I plot the averages surface water shortfalls across contracts for each the February, March and June forecasts. The
lowest and highest average shortfall of the year are plotted here, as well as a line to denote the range. An ‘x’ denotes the final
shortfall allocation. I also plot the long-run trends of the final shortfall allocation, with a break at 1992 to illustrate the change
in forecasting policy at that point from the Central Valley Project Improvement Act

Table A.1: Surface Water Allocation Forecast Timing Summary Statistics

SWP CVP (south)
Time Period % with updates Mean allocation % % with updates Mean allocation %
Near Feb 1 (Forecast) 97.96 38.39 53.06 40.50
Near Apr 1 (Forecast) 73.47 54.10 89.80 45.36
Near June 1 (Final) 46.94 60.00 63.27 60.77

Note: This is a summary of the surface water allocation forecasts that I observe, for the State Water Project and the southern
portion of the Central Valley Project (which is representative of the timing of the other CVP regions).

Resources Control Board, [1995). Therefore, since 1995 the State Water Resources Control Board has asked
the projects report the tenth-percentile statistic for the February allocation forecast. I show in the results

section of the paper that the projects change in the
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Figure A.2: Four examples of how a farmer would encounter a surface water allocation forecast
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State Water Project Increases Allocation Forecast for
Millions of Californians

Published: Jan 28,2025

Despite dry conditions in January, above average
reservoir storage allows for an increase in water
deliveries for 2025

SACRAMENTO, Calif. - Today, the Department of Water
Resources (DWR) announced an update to the State Water
Project (SWP) allocation forecast for 2025. The allocation has
increased to 20 percent of requested supplies, up from 15
percent in December. The SWP provides water to 29 public
water agencies that serve 27 million Californians.

While January has been incredibly dry across California,
storm runoff into the state’s reservoirs came in higher than
forecasted at the end of December allowing for a modest
allocation increase. Storms in late November and early
December had a positive impact by saturating the ground,

The California Aqueduct bifurcates in the West Branch and East Branch
asittravels into the Southern California region at the border of Kern
and Los Angeles Counties. Photo taken May 12,2023,

allowing for storms through December to more efficiently runoff into reservoirs.

More storms are needed, and the long-range forecast does hint at a return to wet conditions in early February that could bring
much-needed rain and snow.

(c) The State Water Project and Central Valley Project
usually publish articles about their initial allocations and
amendments on their websites
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- Water year forecasts for runoff into major CVP storage reservoirs range
from 49 to 63 percent of average. CVP storage on September 30, 1988 was 4.6 million acre-feet. As of
February 28, 1989 it had increased to only 5.4 million acre-feet, which is about 64 percent of normal for
this date.

On the basis of the February water supply forecasts, the CVP announced deficiencies of 25 percent on
deliveries to water rights holders on the Sacramento River and at Mendota Pool. Other agricultural
customers will have 50 percent deficiencies and municipal and industrial generally will have 25 percent
deficiencies.

- SWP conservation storage (Oroville and San Luis) has increased to 2.26
million acre-feet from its low of 1.8 million acre-feet last fall. Other SWP reservoirs storages total 680
thousand acre-feet (94 percent full).

Due to a dry October through February period, the SWP cannot support deliveries at the level approved

in December, 1988 and still meet the target carryover storage of 1.5 million acre-feet in conservation
facilities for the end of the water year. However, with storms since March 1 providing significant |
precipitation and a voluntary 200 thousand acre-feet reduction in water delivery requests by Metropolitan |
Water District, it appears that the forecast water supply will require reductions to agricultural water
deliveries of less than 50 percent. There will be no reductions in deliveries for municipal and industrial
uses. Even with the forecast water supply and the reduced water deliveries, low carryover storage levels
into the next water year may result.

(b) A screenshot from the Department of Water Resources’
snow survey published in March 1989 (these are published,
February, March, April, May and October), and each of the
early-year snow surveys include information like this, high-
lighting allocation decisions made by both projects

south of Delta

Irrigation contractors north of Delta all d 75%;

allocated 15%

From the Bureau of Reclamation:

— BUREAU OF —
RECLAMATION

Today, the Bureau of Reclamation announced initial
2024 water supply allocations for Central Valley
Project water users. Water supply allocations are
based on an estimate of water available for
delivery to Central Valley Project water users and reflect current reservoir storage, precipitation, and

snowpack in the Sierra Nevada.

“The wet hydrologic conditions we experienced during the 2023 water year left most of our reservoirs in
good shape as we progressed to the 2024 water year,” said California-Great Basin Regional Director Karl
Stock. “Precipitation totals this water year started off slowly, evidenced by the fact we were well below
average at the time of the Feb. 1 water supply forecast. Since that time, several storms have boosted the
Sierra Nevada snowpack, bringing us to near normal conditions for Northern California. It is likely we will see
the water supply benefits from these storms in the March 1 forecast update. At the same time, we have to be

prepared for and respond accordingly to the possible re-emergence of drier conditions.”

(d) Maven’s Notebook calls itself ‘California’s Water News
Central’ and has aggregated USBR and DWR water alloca-
tion announcements since its inception in 2013.



Figure A.3: Page views by subject on California water news aggregator
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Note: Distribution of page views by topic on Maven’s Notebook, a California water news aggregator. News collected on May
1, 2025, spanning 5 years.

Table A.2: Typical crops at each planting time by region, and watering requirement

Region Early planting Late planting
Central Low Wheat (170mm) Corn (700mm)
Valley Water Carrots (150mm) Tomatoes (650mm)
High Sugarbeets (220mm) Rice (1100mm)
Water Onions (500mm) Cotton (1000mm)
Inland Low Broceoli (140mm) Corn (780mm)
Desert Water Wheat (270mm) Squash (470mm)
High Watermelons (470mm) Cotton (1200mm)
Water Tomatoes (900mm) Tomatoes (930mm)
South Low Wheat (240mm) Dry beans (370mm)
Coast Water Carrots (275mm) Peas (150mm)
High Strawberries (800 mm) Tomatoes (600mm)
Water Garlic (475mm) Corn (600mm)
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Figure A.4: Rolling average standard deviation of difference between February shortfall forecast and May
shortfall
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Note:

Table A.3: How a shortfall shock corresponds to a different quantity delivered

Quantity delivered

Baseline shortfall —242.69
(172.09)
Mid-season shortfall update —170.81
(106.88)
Late-season shortfall update —141.62
(103.09)
District FEs yes
Year FEs yes
SE cluster contract
Num. obs. 2959
R? (full model) 0.72

***p < 0.01; **p < 0.05; *p < 0.1

o1



Figure A.5: California ecological regions

Climate regions
Central Valley
Intand Desert
North & North Coast
Sierra Nevada
South & Central Coast

Note: This map shows the five major ecological regions in California relevant for agriculture, shows climate regions across the
state, aggregated up from level 3 ecoregions to crop planting regions (UC Master Gardener Program)| [2025). The regions differ
by growing season, and also generally in water availability. The Central Valley has a long growing season, and access to a deep
aquifer. The South and Central Coast has cooler weather, with some important aquifers. The Inland desert region has an early
planting season (winter) and has minimal groundwater and relies heavily on surface water supplies. There is minimal cropland
in the North Coast and Sierra Nevada, and I observe no water districts in these two regions
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B Supplementary Results

B.1 Control function approach to control for simultaneous adaptation actions

Since I have a non-linear model of adaptation decisions, I control for the endogeneity from these alternative
decisions using control functions (Imbens and Newey), 2009). Intuitively, the residual of estimated adaptation
decisions conditional on exogenous variables still includes the effect of the other adaptation choices on the
decision. Including those residuals in my regression control for the endogeneity. Although I will not control
for all alternate decisions, including control functions for the main adaptation substitutes will allow us to
see how important the bias from this source of endogeneity is. The requirements for excluded instruments
in control functions follows the intuition of standard instrumental variables. I use instruments that capture
surprising changes in adaptation-specific input prices, which only affect a substitute choice only through
the level of the other choice. For the well drilling control function, I use the interaction of steel pipe prices
and the depth to the groundwater table, as well as the interaction of the number of well drilling contractors
and drilling machinery prices. For the crop idling control functions I use the interaction of prime farmland
and fertilizer prices. For groundwater extraction, I use the interaction of electricity prices and regulation on
extraction. The results using the control function approach are shown in column 3 of each of the regression
tables in section
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B.2 Alternative specifications for the main regression, and the coefficient esti-

mates

Table B.1: Well drilling responses

Main No controls  All controls  Conley errors  New timing OLS
Baseline shortfall 0.28 0.25 0.30 0.28*** 0.15 0.33
(0.18) (0.18) (0.18) (0.10) (0.11) (0.37)
Mid-season shortfall update 0.25* 0.23 0.25% 0.25%** 0.28* 0.13
(0.15) (0.14) (0.14) (0.06) (0.16) (0.23)
Late-season shortfall update —0.01 —0.02 —0.01 —0.01 0.01 —0.83*
(0.14) (0.14) (0.14) (0.12) (0.15) (0.42)
Omitted vars. controls yes no yes yes yes yes
Control function no no yes no no no
Baseline forecast Last year  Last year Last year Last year January Last year
District FEs yes yes yes yes yes yes
Year FEs yes yes yes yes yes yes
SE cluster contract contract contract Conley 100 km contract contract
Num. obs. 4674 4686 4640 4674 4697 4910
Pseudo R? 0.61 0.61 0.61 0.61 0.61 0.75

***p < 0.01; **p < 0.05; *p < 0.1

Note: These columns show six alternate specifications for the well drilling response to surface water shortfalls from section
The dependent variable is the total number of wells drilled in a district between January and August. The first column is the
main specification, plotted in ﬁgure@ The main specification includes early-season precipitation, early-season temperature, the
lagged depth to the groundwater table and the lagged cumulative number of wells in a district as controls, as well as district
and year fixed effects. The standard errors are clustered at the contract level. For the first five columns estimated with PPML,
the coefficients roughly show the percent change in an action with a one-point increase in the surface water shortfall from each
of the three periods in the planting season. The second column omits all controls except for fixed effects. The third column
includes all baseline controls, adding the control function for groundwater extraction and crop choice. The fourth column uses
standard errors robust to spatial correlation, using a radius slightly larger than the average county in California. The fifth
column uses the January forecast as the baseline information, rather than the previous year’s final shortfall. Since not all
district-years have forecast information in January, I make the assumption that nearby districts with forecasts have the most
relevant information, and fill missing information using the closest local information. The final column is the same specification
as the first, but estimated with OLS.

54



Table B.2: Depth to groundwater responses

Main No controls  All controls  Conley errors ~ New timing OLS
Baseline shortfall 0.04 —0.01 0.03 0.04 0.06 —2.02
(0.07) (0.08) (0.08) (0.05) (0.08) (9.63)
Mid-season shortfall update 0.02 —0.00 0.01 0.02 0.02 —-2.09
(0.06) (0.06) (0.06) (0.05) (0.06) (6.34)
Late-season shortfall update 0.08* 0.04 0.09** 0.08*** 0.07* 2.31
(0.04) (0.05) (0.04) (0.03) (0.04) (4.54)
Omitted vars. controls yes no yes yes yes yes
Control function no no yes no no no
Baseline forecast Last year  Last year Last year Last year January Last year
District FEs yes yes yes yes yes yes
Year FEs yes yes yes yes yes yes
SE cluster contract contract contract Conley 100 km contract contract
Num. obs. 4923 4923 4488 4923 4950 4923
Pseudo R? 0.75 0.75 0.76 0.75 0.75 0.81

***p < 0.01; "*p < 0.05; *p < 0.1

Note: These columns show six alternate specifications for the change in depth to the groundwater table response to surface
water shortfalls from section [3| The dependent variable is the level depth to the groundwater table in the dry season (absolute
value) in feet. The change in depth to the groundwater table is a proxy for groundwater extraction. The first column is the
main specification, plotted in figure @ The main specification includes early-season precipitation, early-season temperature, the
lagged depth to the groundwater table and the lagged cumulative number of wells in a district, and the regional groundwater
depth as controls, as well as district and year fixed effects. The standard errors are clustered at the contract level. For the first
five columns estimated with PPML, the coefficients roughly show the percent change in an action with a one-point increase in
the surface water shortfall from each of the three periods in the planting season. The second column omits all controls except
for fixed effects. The third column includes all baseline controls, adding the control function for groundwater extraction and
crop choice. The fourth column uses standard errors robust to spatial correlation, using a radius slightly larger than the average
county in California. The fifth column uses the January forecast as the baseline information, rather than the previous year’s
final shortfall. Since not all district-years have forecast information in January, I make the assumption that nearby districts
with forecasts have the most relevant information, and fill missing information using the closest local information. The final
column is the same specification as the first, but estimated with OLS.
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Table B.3: Evapotranspiration responses

Main No controls  All controls  Conley errors  New timing OLS
Baseline shortfall —0.01 —0.00 —0.04 —0.01 —0.03 —0.09
(0.04) (0.04) (0.04) (0.03) (0.04) (0.09)
Mid-season shortfall update —0.01 —0.00 —0.02 —0.01 —0.00 —0.05
(0.03) (0.03) (0.03) (0.02) (0.03) (0.06)
Late-season shortfall update 0.03 0.03 0.02 0.03 0.03* 0.03
(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)
Omitted vars. controls yes no yes yes yes yes
Control function no no yes no no no
Baseline forecast Last year  Last year Last year Last year January Last year
District FEs yes yes yes yes yes yes
Year FEs yes yes yes yes yes yes
SE cluster contract contract contract Conley 100 km contract contract
Num. obs. 4500 4513 4465 4500 4524 4500
Pseudo R? 0.18 0.18 0.18 0.18 0.18 0.85

< 0.01; **p < 0.05; *p < 0.1

Note: These columns show six alternate specifications for the evapotranspiration response to surface water shortfalls from section
The dependent variable is average evapotranspiration, measured in meters per year. Evapotranspiration is a proxy for the
total amount of water applied. The first column is the main specification, plotted in ﬁgure@ The main specification includes
early-season precipitation, early-season temperature, the lagged depth to the groundwater table and the lagged cumulative
number of wells in a district as controls, as well as district and year fixed effects. The standard errors are clustered at the
contract level. For the first five columns estimated with PPML, the coefficients roughly show the percent change in an action
with a one-point increase in the surface water shortfall from each of the three periods in the planting season. The second
column omits all controls except for fixed effects. The third column includes all baseline controls, adding the control function
for groundwater extraction and crop choice. The fourth column uses standard errors robust to spatial correlation, using a radius
slightly larger than the average county in California. The fifth column uses the January forecast as the baseline information,
rather than the previous year’s final shortfall. Since not all district-years have forecast information in January, I make the
assumption that nearby districts with forecasts have the most relevant information, and fill missing information using the
closest local information. The final column is the same specification as the first, but estimated with OLS.
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Table B.4: Idling responses

Main No controls  All controls  Conley errors  New timing OLS
Baseline shortfall 0.18 0.24* 0.15 0.18 0.13 —307.90
(0.12) (0.12) (0.13) (0.11) (0.14) (412.74)
Mid-season shortfall update 0.24*** 0.25%** 0.19** 0.24*** 0.26%** 227.67
(0.08) (0.08) (0.09) (0.06) (0.07) (282.99)
Late-season shortfall update  0.40*** 0.44*** 0.38*** 0.40*** 0.44*** 504.41*
(0.07) (0.07) (0.08) (0.10) (0.07) (281.03)
Omitted vars. controls yes no yes yes yes yes
Control function no no yes no no no
Baseline forecast Last year  Last year Last year Last year January Last year
District FEs yes yes yes yes yes yes
Year FEs yes yes yes yes yes yes
SE cluster contract contract contract Conley 100 km contract contract
Num. obs. 1938 1946 1934 1938 1940 1938
Pseudo R? 0.98 0.98 0.98 0.98 0.98 0.94

***p < 0.01; **p < 0.05; *p < 0.1

Note: These columns show six alternate specifications for the idling response to surface water shortfalls from section The
dependent variable is the number of idled acres in a district. There are fewer observations than the earlier actions because crop
data only spans from 2007-2022. The first column is the main specification, plotted in figure @ The main specification includes
early-season precipitation, early-season temperature, the lagged depth to the groundwater table and the lagged cumulative
number of wells in a district, and the lagged total perennial area as controls, as well as district and year fixed effects. The
standard errors are clustered at the contract level. For the first five columns estimated with PPML, the coefficients roughly
show the percent change in an action with a one-point increase in the surface water shortfall from each of the three periods
in the planting season. The second column omits all controls except for fixed effects. The third column includes all baseline
controls, adding the control function for groundwater extraction and crop choice. The fourth column uses standard errors robust
to spatial correlation, using a radius slightly larger than the average county in California. The fifth column uses the January
forecast as the baseline information, rather than the previous year’s final shortfall. Since not all district-years have forecast
information in January, I make the assumption that nearby districts with forecasts have the most relevant information, and fill
missing information using the closest local information. The final column is the same specification as the first, but estimated
with OLS.
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Table B.5: Perennial planting responses

Main No controls  All controls  Conley errors  New timing OLS
Baseline shortfall 0.05 0.12 0.05 0.05 0.09 —343.18
(0.10) (0.12) (0.10) (0.09) (0.09) (473.86)
Mid-season shortfall update 0.02 0.03 0.02 0.02 —0.00 —341.25
(0.05) (0.06) (0.05) (0.04) (0.06) (227.19)
Late-season shortfall update 0.03 0.06 0.03 0.03 —0.01 —1041.44**
(0.06) (0.07) (0.06) (0.05) (0.06) (397.17)
Omitted vars. controls yes no yes yes yes yes
Control function no no yes no no no
Baseline forecast Last year ~ Last year Last year Last year January Last year
District FEs yes yes yes yes yes yes
Year FEs yes yes yes yes yes yes
SE cluster contract contract contract Conley 100 km contract contract
Num. obs. 1938 1946 1934 1938 1940 1938
Pseudo R? 0.98 0.98 0.98 0.98 0.98 0.97

***p < 0.01; **p < 0.05; *p < 0.1

Note: These columns show six alternate specifications for the perennial response to surface water shortfalls from section|3] The
dependent variable is the number of perennial acres in a district. There are fewer observations than the earlier actions because
crop data only spans from 2007-2022. Perennial acreage is primarily a placebo, since farmers should not drastically adjust
permanent acreage in response to surface water shocks. The first column is the main specification, plotted in ﬁgure@ The main
specification includes early-season precipitation, early-season temperature, the lagged depth to the groundwater table and the
lagged cumulative number of wells in a district, and the lagged total perennial area as controls, as well as district and year fixed
effects. The standard errors are clustered at the contract level. For the first five columns estimated with PPML, the coefficients
roughly show the percent change in an action with a one-point increase in the surface water shortfall from each of the three
periods in the planting season. The second column omits all controls except for fixed effects. The third column includes all
baseline controls, adding the control function for groundwater extraction and crop choice. The fourth column uses standard
errors robust to spatial correlation, using a radius slightly larger than the average county in California. The fifth column uses
the January forecast as the baseline information, rather than the previous year’s final shortfall. Since not all district-years have
forecast information in January, I make the assumption that nearby districts with forecasts have the most relevant information,
and fill missing information using the closest local information. The final column is the same specification as the first, but
estimated with OLS.
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Table B.6: High-water cropping responses

Main No controls  All controls  Conley errors ~ New timing OLS
Baseline shortfall —0.24** —0.22** —0.26** —0.24* —0.35"** 669.52
(0.11) (0.09) (0.10) (0.12) (0.08) (525.62)
Mid-season shortfall update —0.19** —0.20** —0.20** —0.17 —-0.14 202.51
(0.09) (0.09) (0.09) (0.11) (0.10) (209.02)
Late-season shortfall update  —0.25** —0.24** —0.26** —0.25% —0.17 386.37
(0.11) (0.11) (0.11) (0.13) (0.14) (371.64)
Omitted vars. controls yes no yes yes yes yes
Control function no no yes no no no
Baseline forecast Last year  Last year Last year Last year January Last year
District FEs yes yes yes yes yes yes
Year FEs yes yes yes yes yes yes
SE cluster contract contract contract Conley 100 km contract contract
Num. obs. 1906 1914 1902 1906 1908 5774
Pseudo R? 0.99 0.99 0.99 0.99 0.99 0.38

***p < 0.01; "*p < 0.05; *p < 0.1

Note: These columns show six alternate specifications for the high-water acreage response to surface water shortfalls from
section@ The dependent variable is the number of high-water annual acres in a district, which are typically planted late in the
planting season. There are fewer observations than the earlier actions because crop data only spans from 2007-2022. The first
column is the main specification, plotted in figure @ The main specification includes early-season precipitation, early-season
temperature, the lagged depth to the groundwater table and the lagged cumulative number of wells in a district, and the lagged
total perennial area as controls, as well as district and year fixed effects. The standard errors are clustered at the contract
level. For the first five columns estimated with PPML, the coefficients roughly show the percent change in an action with a
one-point increase in the surface water shortfall from each of the three periods in the planting season. The second column omits
all controls except for fixed effects. The third column includes all baseline controls, adding the control function for groundwater
extraction and crop choice. The fourth column uses standard errors robust to spatial correlation, using a radius slightly larger
than the average county in California. The fifth column uses the January forecast as the baseline information, rather than
the previous year’s final shortfall. Since not all district-years have forecast information in January, I make the assumption
that nearby districts with forecasts have the most relevant information, and fill missing information using the closest local
information. The final column is the same specification as the first, but estimated with OLS.

59



Table B.7: Low-water cropping responses

Main No controls  All controls  Conley errors ~ New timing OLS
Baseline shortfall 0.35%** 0.38%** 0.35%** 0.35** 0.45%** 750.47*
(0.10) (0.09) (0.10) (0.16) (0.11) (363.10)
Mid-season shortfall update 0.26*** 0.29%** 0.25%** 0.26* 0.24%** 355.39**
(0.10) (0.10) (0.09) (0.15) (0.09) (163.32)
Late-season shortfall update 0.17** 0.17** 0.22%** 0.17 0.11 424.00
(0.08) (0.08) (0.08) (0.18) (0.08) (257.65)
Omitted vars. controls yes no yes yes yes yes
Control function no no yes no no no
Baseline forecast Last year  Last year Last year Last year January Last year
District FEs yes yes yes yes yes yes
Year FEs yes yes yes yes yes yes
SE cluster contract contract contract Conley 100 km contract contract
Num. obs. 1906 1914 1902 1906 1908 5774
Pseudo R? 0.97 0.96 0.97 0.97 0.97 0.37

***p < 0.01; "*p < 0.05; *p < 0.1

Note: These columns show six alternate specifications for the low-water acreage response to surface water shortfalls from section
@ The dependent variable is the number of low-water annual acres in a district, which are typically planted earlier in the planting
season. There are fewer observations than the earlier actions because crop data only spans from 2007-2022. The first column is
the main specification, plotted in figure @ The main specification includes early-season precipitation, early-season temperature,
the lagged depth to the groundwater table and the lagged cumulative number of wells in a district, and the lagged total perennial
area as controls, as well as district and year fixed effects. The standard errors are clustered at the contract level. For the first
five columns estimated with PPML, the coefficients roughly show the percent change in an action with a one-point increase in
the surface water shortfall from each of the three periods in the planting season. The second column omits all controls except
for fixed effects. The third column includes all baseline controls, adding the control function for groundwater extraction and
crop choice. The fourth column uses standard errors robust to spatial correlation, using a radius slightly larger than the average
county in California. The fifth column uses the January forecast as the baseline information, rather than the previous year’s
final shortfall. Since not all district-years have forecast information in January, I make the assumption that nearby districts
with forecasts have the most relevant information, and fill missing information using the closest local information. The final
column is the same specification as the first, but estimated with OLS.
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B.3 Multinomial logit crop responses

I aggregate the Cropland Data Layer classifications into 7 categories which reflect crops with different
planting times, watering intensities, and planting intensities to reflect the qualitatively different substitutions
available. Low-water crops are typically planted in the winter, and are usually grains. High-water crops are
typically planted late in the year, like rice and cotton. I also include a category for mixed-water crops, which
can be low-water if they are planted early, and high-water if they are planted late, like many vegetables.
Double crops have two or more planting times, like alfalfa and double-cropped grains. Perennial (permanent)

crops include fruit trees and nut trees. The last two categories are idled fields, and non-agricultural fields.

C ={low-water, high-water, mixed-water,

double-cropped, non-ag, idle, perennial }

Consider a farmer ¢« who decides every year whether to plant her field in one of each seven crop categories.
Of course, some of these decisions are dynamic, and several papers have modelled the dynamics of the decision
((Scott), [2014)), Burlig et al.| (2020))). My simpler model is intended to capture short-term annual cropping
decisions relative to the dynamic category (perennials) which I find in my main empirical specification does
not respond very much to short-term information.

The simple multinomial logit model is shown in equation The fraction of all of the fields planted in
crop ¢,j € C depends on the shortfall information, as well as other controls including the district-level past
wells drilled, field crop prices, weather, depth to the water table, ecological region, groundwater availability,

and total average water availability.
eZih

P(cit|Zit,C, B) = ———5—
Z > jec e“1f

The results are shown in table
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Table B.8: Multinomial logit: response of crop choice to forecast shortfall

varname double early idle late mixed non_ ag
(Intercept) 20.181%%F  10.027*** 947104 12.864*F*  13.805%**  5.7H¥**
(0.087)  (0.136) (0.32) (0.287) (0.31) (0.314)
Baseline forecast 1.063***  0.771%%%  0.367*** -0.052 0.084** 0.01
(0.062)  (0.068)  (0.051) (0.05) (0.038) (0.04)
Mid shortfall update 0.43%** 0.259*** 0.094* -0.044 0.165***  0.098***
(0.063) (0.07) (0.052) (0.05) (0.039)  (0.041)
Late shortfall update 0.544*** -0.086 -0.064 -0.33%FF%  0.156%FF  (0.252%F*

(0.073) (0.078)  (0.059)  (0.057) (0.045)  (0.051)
Log lag cumulative wells — -0.278%%%  _0485%FF  _0,647*%* 0 5E8¥FF  -0.232%FF (. 249%%*
(0.015) (0.016)  (0.013)  (0.013) (0.011)  (0.012)

Rainfall -0.001%**  _0.001%** 0.001** -0.001%* 0.002***  (0.002***
(0) (0) (0) (0) (0) (0)
Temperature -0.132%** -0 125%FF  0.08%**  -0.128%**  0.036***  0.035***
(0.013)  (0.015)  (0.01)  (0.011)  (0.008)  (0.008)
Central Valley = 1 4.488*** 3.255%** 1.341%8F  4.423%#* 0.899%*** 2 442%**
(0.178)  (0.236)  (0.118)  (0.214)  (0.116)  (0.115)
Inland Desert = 1 4.612%%* 1.902%**  4.472%F% 2 Q781K 3 35T 1.939%**
(0.342)  (0.332)  (0.162)  (0.139)  (0.162)  (0.155)
Sierra Nevada = 1 T.H44FR 1825 241X B.06THFK 6.635%** 6277k
(0.305)  (0.003)  (0.014)  (0.008)  (0.204)  (0.183)
South Coast = 1 3.537*** 3.045%** 1.248%F*%  3.296%** 2.914%** -0.024
(0.193)  (0.242)  (0.123) (0.22) (0.12) (0.118)
GW depth in 2000 -0.583***  _0.513%FF  _0.497FFF  _(0.638*** 0.029** 0.244%+*
(0.015)  (0.017)  (0.014)  (0.013)  (0.014)  (0.016)
log(-1 * lag_ depth) 0.116%** 0.122%** 0.18%** 0.234***  _0.246%*%*  _0.164%**
(0.021)  (0.023)  (0.018)  (0.018)  (0.016)  (0.019)
Log area (km™2) .22 0.48%F%  (.523%**  (.534%FK  0.159%**  (.432%**
(0.016)  (0.018)  (0.013)  (0.013)  (0.012)  (0.013)
Log groundwater use -0.008* 0.001 -0.02%** 0.003 -0.01%** 0. 13%**
(0.004)  (0.005)  (0.003)  (0.004)  (0.003)  (0.003)
log(price_ field) -3.694%H% 2,03 7K L TTRIRR L2.464%HF _2.313%KK (. TH4K

(0.044)  (0.064)  (0.07)  (0.084)  (0.065)  (0.065)
Log non-project ag water 0.004 0.017***  0.025*** 0.01%** 0.035***  _0.062***
(0.004)  (0.004)  (0.003)  (0.003)  (0.003)  (0.003)

Note: These are the log-odds coefficients of a multinomial logit model of crop choice in response to information throughout the
growing season. The omitted category is perennial acreage, which I show in my main results respond very little to short term
information because of the high cost of switching crops from year to year. I include the same controls and surface water forecast
variables, but since I omit fixed effects, all variables after temperature are to account for differences across districts and years.

B.4 Heterogeneity results
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Figure B.1: Heterogeneous extraction responses
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Note: These figures show the results of the three heterogeneity tests in the data. In each regression, I interact the shortfall
information from the main estimating equation with a different district or information characteristic. The dependent variable
is the total groundwater extraction in the district, and the coefficients should be interpreted as approximately the percent change
in idling for a one percentage-point change in the shortfall. The first plot shows the difference in idling response depending on
the district being in the lowest, middle or highest tercile of wells per acre of cropland. The second plot shows the difference in
idling response across districts in the lowest, middle or highest share of high-value cropland, defined by vegetable and perennial
acreage. The final plot interacts the shortfall updates with an indicator for whether the update was an increase (bad shortfall
news) or a decrease (good shortfall news).
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B.5 Distributions

Figure B.2: Distributions of residuals using OLS
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B.6 Do farmers drill wells as a long-term adaptation strategy?

Separating the study of short and long-term surface water supply on well drilling is tightly connected to
new advancements in the climate econometrics literature. [Deschénes and Greenstone| (2007) showed using
the envelope theorem that the effect of deviations in local weather from the average on economic outcomes
identify the effect of climate. However, |Lemoine| (2018)) clarifies the theory primarily by showing that capital
and resource-intensive adaptation makes the effect of short-term weather fluctuations differ from the effect
of long-term climate. My paper will explore whether the theoretical advancement has practical implications
in California agriculture.

Lemoine| (2018]) lays out reasons for why agents might adapt differently in the long-term than the short
term. First, agents might only pay for long-term investments if the climate permanently changed. Second,
a change in short-run forecasts is different from a permanent change in expected weather. Third, reactions
to short-run weather and long-term climate are different.

The well choice value function V' is made up of three inputs, whether the well has been drilled yet
(well € {0,1}), the current year’s forecasted shortfall § and the expectation of the future average shortfall
5. In future periods, the forecasted shortfall is just the average expected shortfall. The farmer makes the
choice to drill a well when the value of drilling now is greater than the value of waiting.

By studying the effect of short term shortfall on wells in section [3] I was targetting the first part of the
value function, the current year profit: 7 (8§, well). I found that changing § did not result in a permanent
increase in wells, suggesting that § does not contribute very much to beliefs about s. In this section, I target
how a change in § affects the decision.

The main reason the climate econometrics literature exists is because it is difficult to find identifying
variation from differences in climate, and it is analogously more difficult to identify adaptation to long-run
surface water availability. [Hagerty| (2022) has one of the only papers studying long-run adaptation using
quasi-random variation in long-run conditions. His paper also studies water scarcity in California, using
a regression discontinuity across water districts with different quantities of water rights. Instead, I use a
change in surface water allocation policy which applied only to water districts with project rights.

In October 1992, the US Congress passed the Central Valley Project Improvement Act, which redis-
tributed 800,000 acre feet, about 14% of CVP water, of water from contractors to environmental uses. The
act was highly controversial, and marked a fundamental and permanent change in the operation and goals
of the Central Valley Project. The State Water Project was also affected due to the coordinated operations
of the projects (McClurg and Sudman, [2000). the state had very little ability to curtail forms of water
rights at the time, and thus no other rights were affected. Pressure for a law to protect the environment
in the Sacramento-San Joaquin delta had been mounting since 1978, when the State Water Board issues
Water Rights Decision 1485 requiring SWP and CVP to meet Delta water quality standards. However, no
significant legislation had been passed, and no proposal had met either the State Water Board nor the EPA’s
requirements (Water Education Foundation) 2025)).

I use the passage of the Central Valley Project Improvement Act to identify the effect of a permanent
decrease in surface water for districts with project contracts. Since no surface water market existed at the
time, only the project districts were affected. Districts with other forms of water rights make up the control
group. I use a differences-in-differences type of event study design to estimate how districts facing the
permanent decrease in surface water drilled wells compared to the rest. Equation @ shows the estimating

strategy:
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Figure B.3: Long-run determinants of well drilling: perennial prices and surface water shortfalls
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Figure B.4: Net cumulative agricultural wells in California
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Note: The dots in this figure shows the net number of agricultural wells in California: the sum of those drilled subtracted from
those removed. It is mandatory to remove permanently inactive wells. The red line behind the dots shows the linear trend of
wells, and the red bars behind the figure show the major droughts as defined by the California Department of Water Resources
(California Department of Water Resources, [2025b). The blue dashed line shows the cumulative wells trend after setting new
wells in drought years equal to the new wells in the most recent non-drought year.

66



Figure B.5: Wells drilled in project relative to non-project districts after CVP Improvement Act
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P, is an indicator variable for districts with project contracts. 1(¢ = y) is an indicator variable for the
year being equal to y, since the event occurs at the same time for all districts. 3, is the difference in the
level of well drilling for project and non-project districts in year ¢. For my main specification, I continue
to use a PPML regression since it best captures the well drilling decision. In robustness checks, I instead
use (Callaway and Sant’Annal [2021)) to address any potential problems doing differences-in-differences with
multiple periods, using a logged dependent variable.

Figure shows the result. The baseline year is 1991, the year before the Central Valley Project
Improvement Act was passed. In 1992, project districts drilled 25% more wells than they would have absent
the act. In 1993 and 1994, project districts drilled nearly 40% more wells than otherwise. By 1995 and
beyond, the treatment effect drops, and is not statistically different from zero.

Unlike the short-term drilling result, the number of wells drilled in response to the permanent shift in
surface water availability is not temporary. Six years after the shock, there is no evidence in the well drilling
trend reversing to capture wells that would have been drilled several years in the future. Also, compared
to the short-term results, the amount of well drilling increase is huge. Officially, 14% of CVP water was
reallocated to environmental uses. Empirically, I find that post 1992, districts’ allocation was on average 13
percentage points less, after accounting for a time trend. Therefore, the treatment in the event study was
14 times larger every year than the marginal shortfall change I explored in section [3| but the well drilling

effect was 350 times larger, and permanent.

B.7 How much does groundwater use increase after well drilling?

We expect well drilling to increase groundwater use. However, there are several details that are not obvious.
First, we do not know ex ante whether farmers use groundwater in years with a normal allocation of surface

water. Since groundwater tends to be more expensive in normal surface water years, farmers would use
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groundwater if districts set the price of surface water lower than the marginal product of water (given that
the water district usually imposes limits on the quantity of surface water that can be purchased). Second,
there is the fundamental unknown in water management in California: how much water do farmers extract
from a given well? In this section, I regress depth to the groundwater table over time on new wells drilled
in a particular year. I explore the dynamic path using local projections with instrumental variables.

Groundwater extraction and well drilling are simultaneously determined by surface water scarcity, weather,
prior wells drilled, and a host of other variables. I use well supply shifters as an instrument to capture well
drilling decisions unaffected by current water conditions. I construct an instrument using the interaction of
two variables that capture different well supply shocks. The first is a measure of market power in the well
drilling market. Higher market power should increase the price of wells holding all else equal. In my main
specification, I measure market power by counting the number of well drilling companies operating in the
area. I specifically I take the 25 kilometer buffer around the convex hull of all wells drilled by a contractor
over all time, where contractors are defined by an entity that drilled at least two wells, and the lifetime of
the contractor is taken as the time period between its first and last well drilled. Not all contractors drill
wells every year, so the variable captures the number of drillers capable of drilling in an area at a given time,
while separating the variable directly from well demand. Further, the instrument is not directly connected
to well demand since contractors cannot enter the market immediately due to certifications and machinery
investments required. In robustness check, I alter the buffer, alter the definition of the time in business, and
redefine market power using the Herfindahl-Hirschman Index (HHI) over the number of wells drilled in a
particular year.

The number of contractors varies across space and time, though the spatial pattern of the number of
contractors remains similar. Thus, I interact the market power variable with another variable affecting well
supply: well input prices. For my main analysis, I use yearly steel piping prices from FRED, since large
diameter steel piping is common for well casing in large agricultural wells, and this variable exists across most
of my analysis. I check for robustness to other well inputs including oil drilling machinery prices (a proxy
for water well drilling machinery) and plastic piping prices (PVC casing is common for smaller agricultural
wells). Steel piping prices are definitely exogenous to the extraction decision except through wells drilled,
making the instrument valid.

Equation shows the first stage of my instrumental variables specification. Yy is the number of wells
drilled between January and August. Ny denotes the number of contractors, and P; denotes the input
prices. The excluded instrument is Ng x P;. I include these as level variables because they are distributed
close to normally in my data. I include all of the controls as in my previous estimation, X4, and the same
fixed effects. The first stage estimates the well decision linearly, as required by the assumptions of two-stage
least squares. There is no clear way to transform the dependent variable in my case. Many districts choose
0 wells in some ¢ creating problems for interpreting a log transformation (Chen and Rothl [2024). T show the
results of the first stage estimation in table

Yot = a1 Ngg X Py + aaNgr + Xar + va + e + var (10)

The first stage results show that the well supply variables empirically affect the number of wells in an
intuitive way. The first column regresses the number of wells only on the well supply variables. Even without

including fixed effects, the coefficients on the first two variables remain similar across all specifications, giving
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Table B.9: First stage and reduced form: wells drilled in response to well prices

First stage

Reduced Form

(1) (2) (3)

(1)

(2) 3)

Contractors x Steel pipe price ($100)  0.006***  0.004***  0.004*** 0.063**  0.042*** 0.043***
(0.001) (0.001) (0.001)  (0.025) (0.011) (0.011)
Contractors 0.016***  0.016*** 0.017***  0.056 0.128 0.127
(0.004) (0.004) (0.004)  (0.098) (0.082) (0.087)
Steel pipe price ($100) —0.6377** 3.497
(0.143) (4.540)
Controls no no yes no no yes
District FEs no yes yes no yes yes
Year FEs no yes yes no yes yes
F-stat 132 132 127 NA NA NA
Num. obs. 4882 4882 4923 4882 4882 4882
Adj. R? (full model) 0.181 0.760 0.761 0.069 0.805 0.805

***p < 0.01; **p < 0.05; *p < 0.1

Note: The first three columns show the first stage for how the number of wells are affected by the instrument, and the last three
columns show the reduced form for how the depth to the groundwater table is affected by the instrument. The instrument is
the first row, the interaction of the number of contractors and the current steel pipe price. The other two variables are included
in the regression. Each column adds stronger fixed effects or controls. (1) has no controls or fixed effects, meant for building
intuition. (2) adds year and district fixed effects and (3) adds all of the controls.

suggestive evidence that these variables are not determined by the drilling decision. In the raw data, a higher
steel pipe price significantly negatively correlates with drilling. The second and third columns include the
appropriate fixed effects. Overall, as the number of contractors increases in a district relative to the district’s
average and that year’s average, the number of wells drilled increases. Therefore, adding more contractors
appears to actually shift the well supply curve out. The direction on the coefficient of the actual instrument
is not ex-ante obvious. It shows that as steel pipe prices rise, how an additional contractor contributes to
the number of wells in a district. The positive coefficient means that during periods of high steel pipe prices,
the number of contractors influences well drilling even more. Intuitively, increases in input prices matter less
in districts with more contractors, perhaps because the firms continue to compete in prices. The instrument
is highly statistically significant across all specifications.

The instrument I propose induces a minor shift in the value of wells through the well cost. Therefore, the
farmers affected are those with well values close to the threshold of drilling into drilling, and who might have
drilled a few years in the future. These farmers are different from the rest of the population, who will not
drill for several decades, who who had drilled several decades prior. Nevertheless, the local average treatment
effect is interesting and relevant. The two-stage least squares results will capture changes in extraction for
the farmers likeliest to drill next.

I then show how a new well affects the depth to the groundwater table within a local projections frame-
work, and plot the results in figure The left panel shows the cumulative change in depth to the
groundwater table using OLS within each of the local projections regressions. The right panel uses instru-
mental variables. New agricultural wells lead to increases in depths to the water table, by 0.8 after 6 years
in the OLS specification, and a little more than 4 feet after 6 years in the IV specification. It makes sense

for the OLS estimate to be biased downward because across time, as districts have a higher well stock they
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Figure B.6: Change in depth to the groundwater table with 1 new well in a district
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drill less (as recently shown) but also would extract the most groundwater.

The IV estimate is quite high, averaged over a district. The USGS’s theoretical estimates of groundwater
drawdown from large agricultural wells predict that at a distance of 1 mile of the well, a moderately large
agricultural well (1000 gallons per minute) would draw down the aquifer about 2 feet after 1 year, and
the largest agricultural wells (4000 gallons per minute) would draw down the aquifer about 8 feet (Kunkel,
1960)@ The IV estimates are reasonable given the USGS theoretical estimates, if farmers are drilling large
wells and extracting large quantities immediately. My estimates imply that about 1800 acre feet of water
are extracted in the first year in the average district, which is approximately the capacity of a 1000 GPM
well. Theoretical groundwater drawdown predicts a logarithmic change in depth to the groundwater table
if groundwater is being extracted at a constant rate. The IV estimates show the expected levelling off over
time, though the rate of change in the first four years is fairly linear, suggesting increasing extraction in the
first few years.

This subsection reveals that farmers use new wells immediately and extensively. The local average
treatment effect captures the effect of drilling a well in an average year, since the well supply shocks I
use are not related to surface water supply. Yet, the instrumental variables estimates are consistent with
farmers having drilled large agricultural wells, and extracting large quantities in the average yeaﬂ Thus,
the marginal new well drillers do not merely supplement their surface water with groundwater, but rather

greatly increases the water intensity of the farm.

24The USGS model also predicts that drawdown is higher close to the well; about 4 feet and 11 feet for the moderate and
large wells at a distance of 1000 feet. Drawdown is also the fastest in the beginning. After 10 years, the drawdown of these
wells at 1 mile is about 3 feet and 11 feet respectively.

25The raw data shows that the proportion of the highest capacity wells (greater than 2000 GPM) increased from 5% to 15%
of new wells drilled between 1990 and 2015.
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